pdf35

Ribogospod. nauka Ukr., 2023; 1(63): 3-32
DOI: https://doi.org/10.15407/fsu2023.01.003
УДК 628.394.1:615

Проблема забруднення водних екосистем антибіотиками (огляд)

В. В. Шепелевич, Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її. , Інститут рибного господарства НААН, м. Київ
А. Є. Березкіна, Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її. , Інститут рибного господарства НААН, м. Київ
Т. В. Третякова, Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її. , Інститут рибного господарства НААН, м. Київ
Н. М. Матвієнко, Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її. , Інститут рибного господарства НААН, м. Київ

Мета. Проаналізувати та узагальнити інформацію щодо проблеми забруднення водних екосистем антибіотиками.

Результати. Представлена робота описує глобальні ризики, пов’язані з присутністю антибіотиків у водному середовищі та водних організмах, кількісну та якісну оцінку забруднення антибітиками водних ресурсів Світового океану з використанням двостулкових молюсків.

Практична значимість. Огляд може бути корисним для широкого загалу науковців, які займаються екологією, сільським господарством, ветеринарією, рибництвом; для фахівців у сфері фармакології та мікробіології. Робота також може бути цікавою для викладачів та студентів профільних вишів.

Ключові слова: антибіотики, забруднення стічних вод антибіотиками, антибіотикорезистентність, гени стійкості, водні біоценози, аквакультура, двостулкові молюски.

ЛІТЕРАТУРА

  1. An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms; Source / Baralla Elenaet al. // Animals. 2021. Vol. 11. doi: 10.3390/ani11113239. 
  2. Bisphenols’ occurrence in bivalves as sentinel of environmental contamination / Baralla E. et al. // Sci. Total. Environ. 2021. Vol. 785. 147263. doi:10.1016/j.scitotenv.2021.147263.
  3. Larsson D. G. J. Antibiotics in the environment // Upsala J. Med. Sci. 2014. Vol. 119. P. 108—112. doi: 10.3109/03009734.2014.896438.
  4. Presence of pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk assessment for human health: Results from a case study in North-Western Spain / Martínez-Morcillo S. et al. // Int. J. Hyg. Environ. Health. 2020. Vol. 223. P. 10—21. doi: 10.1016/j.ijheh.2019.10.011.
  5. Kümmerer K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere. 2009. Vol. 75. P. 417—434. doi: 10.1016/j.chemosphere.2008.11.086.
  6. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region / Zhao J.-L. et al. // Environ. Pollut. 2015. Vol. 198. P. 15—24. doi: 10.1016/j.envpol.2014.12.026.
  7. Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China / Li W. et al. // Environ. Pollut. 2012. Vol. 162. P. 56—62. doi: 10.1016/j.envpol.2011.10.022.
  8. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China / Xu J. et al. // Sci. Total Environ. 2014. Vol. 497–498. P. 267—273. doi: 10.1016/j.scitotenv.2014.07.114.
  9. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods / Qiulian Y. et al. // Bioengineered. 2021. Vol. 12(1). P. 7376—7416. doi:10.1080/21655979.2021.1974657.
  10. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes / Tran N. H. et al. // Water Res. 2016. Vol. 104. P. 461—472. https://doi.org/10.1016/j.watres.2016.08.040 
  11. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview / Wang J. et al. // Sci Total Environ. 2020. Vol. 744. P. 140997. https://doi.org/10.1016/j.scitotenv.2020.140997 
  12. Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment / Mello F. V. et al. // Sci. Total Environ. 2022. Vol. 803. P. 149744. doi: 10.1016/j.scitotenv.2021.149744.
  13. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities / Mackie R. I. et al. // Anim. Biotechnol. 2006. Vol. 17. P. 157—176. doi: 10.1080/10495390600956953.
  14. A review on the ecotoxicological effect of sulphonamides on aquatic organisms / Zhou J. et al. // Toxicol. Rep. 2022. Vol. 9. P. 534—540. doi: 10.1016/j.toxrep.2022.03.034.
  15. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China / Zhang R. et al. // Bioconcentration and diet safety of seafood. Ecotoxicol. Environ. Saf. 2018. Vol. 154. P. 27—35. doi: 10.1016/j.ecoenv.2018.02.006.
  16. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications / Felis E. et al. // Eur. J. Pharmacol. 2020. Vol. 866. P. 172813. doi: 10.1016/j.ejphar.2019.172813.
  17. Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation / Sosa-Hernández J. E. et al. // Case Studies in Chemical and Environmental Engineering. 2021. Vol. 4. https://doi.org/10.1016/j.cscee.2021.100127.
  18. Occurrence of antibiotics in mussels and clams from various FAO areas / Chiesa L. M. et al. // Food Chem. 2018. Vol. 240. P. 16—23. doi: 10.1016/j.foodchem.2017.07.072.
  19. Antibiotic fate and transport in three effluent-dominated Ozark streams / Massey L. B. et al. // Ecol. Eng. 2010. Vol. 36. P. 930—938. doi: 10.1016/j.ecoleng.2010.04.009. 
  20. Martins M., Sanches S., Pereira I. A. C. Anaerobic Biodegradation of Pharmaceutical Compounds: New Insights into the Pharmaceutical-Degrading Bacteria // J. Hazard. Mater. 2018. Vol. 357. P. 289—297. doi:10.1016/j.jhazmat.2018.06.001.
  21. Distribution, Combined Pollution and Risk Assessment of Antibiotics in Typical marine Aquaculture Farms Surrounding the Yellow Sea, North China / Han Q. F. et al. // Environ. Int. 2020. Vol. 138. 105551. doi:10.1016/j.envint.2020.105551.
  22. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment / He Y. et al. // NPJ Clean Water. 2020. Vol. 4. P. 1—11. https://doi.org/10.1038/s41545-020-0051-0 
  23. A Review of Current Bacterial Resistance to Antibiotics in Food Animals / Xu C. et al. // Front Microbiol. 2022. Vol. 13. 822689. doi: 10.3389/fmicb.2022.822689.
  24. High prevalence and diversity characteristics of blaNDM, mcr, and blaESBLs harboring multidrug-resistant Escherichia coli from chicken, pig, and cattle in China / Liu Z. H. et al. // Front. Cell. Infect. Microbiol. 2022. Vol. 11. 755545. doi: 10.3389/fcimb.2021.755545.
  25. Deciphering of microbial diversity and antibiotic resistome of bioaerosols in swine confinement buildings / Yan H. et al. // Sci. Total Environ. 2021. Vol. 781. 147056. doi: 10.1016/j.scitotenv.2021.147056.
  26. Larsson D. G. J., Flach C.-F. Antibiotic resistance in the environment // Nat. Rev. Microbiol. 2022. Vol. 20. P. 257—269. doi: 10.1038/s41579-021-00649-x.
  27. The bacterial mobile resistome transfer network connecting the animal and human microbiomes / Hu Y. et al. // Appl. Environ. Microbiol. 2016. Vol. 82. P. 6672—6681. 10.1128/AEM.01802-16.
  28. WHO Report on Surveillance of Antibiotic Consumption 2016-2018. Early Implementation. Geneva, Switzerland : WHO, 2018.
  29. Топ лекарств в Украине. URL : https://liki24.com/uk/articles/top-lekarstv-v-ukraine-2020-2021 (дата звернення : 20.08.2022).
  30. A Review on Antibiotic Resistance: Alarm Bells are Ringing / Bin Zaman S. et al. // Cureus. 2017. Vol.  9. e1403. doi:10.7759/cureus.1403.
  31. Horizontal Transfer of Antibiotic Resistance Genes in the Human Gut / Mcinnes R. S. et al. // Microbiome. Curr. Opin. Microbiol. 2020. Vol. 53. P. 35—43. doi:10.1016/j.mib.2020.02.002.
  32. Colorectal Cancer-Associated Microbiota Contributes to Oncogenic Epigenetic Signatures / Sobhani I. et al. // Proc. Natl. Acad. Sci. USA. 2019. Vol. 116. P. 24285—24295. doi:10.1073/pnas.1912129116.
  33. Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk / Bai H. et al. // Environ. Int. 2021. Vol. 158. 106927. 10.1016/j.envint.2021.106927.
  34. Founou L. L., Founou R. C., Essack S. Y. Antibiotic resistance in the food chain: a developing country-perspective // Front. Microbiol. 2016. Vol. 7. 1881. 10.3389/fmicb.2016.01881.
  35. Reducing the risk of transmission of critical antimicrobial resistance determinants from contaminated pork products to humans in south-east Asia / Sirichokchatchawan W. et al. // Front. Microbiol. 2021. Vol.  12. 689015. 10.3389/fmicb.2021.689015.
  36. Dadgostar P. Antimicrobial Resistance: Implications and Costs // Infect. Drug Resist. 2019. Vol. 12. P. 3903—3910. doi:10.2147/idr.s234610.
  37. Antimicrobial resistance. 17 November 2021. URL : https://ahpsr.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance (accessed : 20.08.2022).
  38. Bacteriocins from lactic acid bacteria. a powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine / Hernandez-Gonzalez J. C. et al. // Animals (Basel). 2021. Vol. 11. 979. doi : 10.3390/ani11040979.
  39. Degradation of veterinary antibiotics and hormone during broiler manure composting / Ho Y. B. et al. // Bioresour. Technol. 2013. Vol.  131. P. 476-484. doi : 10.1016/j.biortech.2012.12.194.
  40. Respiratory disease in united states farmers / Hoppin J. A. et al. // Occup. Environ. Med. 2014. Vol. 71. P. 484—491. doi : 10.1136/oemed-2013-101983.
  41. Pharmaceutical pollution of the world’s rivers / John L. et al. // Environmental sciences.2021. https://doi.org/10.1073/pnas.2113947119.
  42. Diverse and abundant antibiotic resistance genes in Chinese swine farms / Zhu Y.‐G. et al. // Proc.  Natl.  Acad.  Sci.  USA. 2013. Vol. 110. P. 3435—3440. doi:10.1073/pnas.1222743110.
  43. Occurrence and toxicity of antibiotics in the aquatic environment: A review / Kovaláková P. et al. // Chemosphere. 2020. Vol. 251. 126351.  doi:10.1016/j.chemosphere.2020.126351.
  44. Grenni P., Ancona V., Barra Caracciolo A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review // Microchemical J. 2018. Vol. 136. P. 25—39. doi:10.1016/j.microc.2017.02.006.
  45. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China:  Occurrence,  bioaccumulation and human dietary exposure /  Chen H. et al. // Mar.  Pollut.  Bull. 2015. Vol.  90. P. 181—187. doi:10.1016/j.marpolbul.2014.10.053.
  46. A Review on Antibiotic Resistance: Alarm Bells are Ringing / Bin Zaman S. et al. // Cureus. 2017. Vol. 9. e1403. doi:10.7759/cureus.1403.
  47. Kummerer K. Antibiotics in the Aquatic Environment - A Review. Part I. Chemosphere. 2009. Vol. 75. P. 347—354. doi : 10.1016/j.position.2008.11.08610.1016/ j.chemosphere.2008.12.006.
  48. Current Situation of Antibiotic Abuse in China and its Residues Distribution in the Environment / Zhang Y. et al. // Contemp. Chem. Ind. 2019. Vol. 48. P. 2660—2662.
  49. The Occurrence and Distribution of Antibiotics in Lake Chaohu, China: Seasonal Variation, Potential Source and Risk Assessment / Tang J. et al. // Chemosphere. 2015. Vol. 122. P. 154—161. doi : 10.1016/j.chemosphere.2014.11.032.
  50. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy / Binh V. N. et al. // Chemosphere. 2018. Vol.  197. P. 438—450. doi: 10.1016/j.chemosphere.2018.01.061HYPERLINK «https://doi.org/10.1016/j.chemosphere.2018.01.061».HYPERLINK «https://doi.org/10.1016/j.chemosphere.2018.01.061»
  51. Grenni P., Ancona V., Barra Caracciolo A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review // Microchemical J. 2018. Vol. 136. P. 25—39. doi: 10.1016/j.microc.2017.02.006.
  52. The correlation between antibiotic resistance gene abundance and microbial community resistance in pig farm wastewater and surrounding rivers / Yang Y. et al. // Ecotox. Environ. Safe. 2019. Vol. 182. 109452. doi : 10.1016/j.ecoenv.2019.109452.
  53. Teixeira J. R., Granek E. F. Effects of environmentally-relevant antibiotic mixtures on marine microalgal growth // Sci Total Environ. 2017. Vol. 580. P. 43—49. https://doi.org/10.1016/j.scitotenv.2016.11.207  
  54. Lanzky P. F., Halling-Sørensen, B. The Toxic Effect of the Antibiotic Metronidazole on Aquatic Organisms // Chemosphere. 1998. Vol. 35. P. 2553—2561. doi: 10.1016/S0045-6535(97)00324-X.
  55. Proteomic Characterization of the Chlamydomonas Reinhardtii Chloroplast Ribosome / Yamaguchi K. et al. // J. Biol. Chem. 2003. Vol. 278. P. 33774—33785. doi:10.1074/jbc.M301934200.
  56. Yamaguchi K., Subramanian A. R. Proteomic Identification of All Plastid-specific Ribosomal Proteins in Higher Plant Chloroplast 30S Ribosomal Subunit. PSRP-2 (U1A-type Domains), PSRP-3alpha/beta (Ycf65 Homologue) and PSRP-4 (Thx Homologue) // Eur. J. Biochem. 2003. Vol. 270. P. 190—205. doi:10.1046/j.1432-1033.2003.03359.x.
  57. Effects of 25 Pharmaceutical Compounds to Lemna Gibba Using a Seven-Day Static-Renewal Test / Brain R. A. et al. // Environ. Toxicol. Chem. 2004. Vol. 23. P. 371—382. doi : 10.1897/02-576.
  58. Aquatic Plants Exposed to Pharmaceuticals: Effects and Risks / Brain R. A. et al. // Rev. Environ. Contam. T. 2008. Vol. 192. P. 67—115. doi: 10.1007/978-0-387-71724-1_3.
  59. Effects of the Presence of Sulfonamides in the Environment and Their Influence on Human Health / Baran W. et al. // J. Hazard. Mater. 2011. Vol. 196. P. 1—15. doi:10.1016/j.jhazmat.2011.08.082.
  60. Yuan X., Chen W. Use of veterinary Medicines in Chinese Aquaculture: Current Status. Italy : FAO, 2012.
  61. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review / Ouda M. et al. // Sci. Total Environ. 2021. Vol.  754. 142177. https://doi.org/10.1016/j.scitotenv.2020.142177 
  62. Bisphenols’ occurrence in bivalves as sentinel of environmental contamination / Baralla E. et al. // Sci. Total. Environ. 2021. Vol. 785. 147263, doi:10.1016/j.scitotenv.2021.147263.
  63. Goldberg’s proposal of “the Mussel Watch”: Reflections after 40 years / Farrington J. W. et al. // Mar. Pollut. Bull. 2016. Vol. 110. P. 501—510. doi : 10.1016/j.marpolbul.2016.05.074.
  64. Harnisz M., Korzeniewska E., Golas I. (2015). The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water // Chemosphere. 2015. Vol. 128. P. 134—141. doi : 10.1016/j.chemosphere.2015.01.035.
  65. Ranjan R., Thatikonda S. β-Lactam resistance gene ndm-1 in the aquatic environment: a review // Curr. Microbiol. 2021. Vol. 78. P. 3634—3643. doi : 10.1007/s00284-021-02630-6.
  66. A Review on Removing Antibiotics and Antibiotic Resistance Genes from Wastewater by Constructed Wetlands: Performance and Microbial Response / Liu X. et al. // Environ. Pollut. 2019. Vol. 254. 112996. doi: 10.1016/j.envpol.2019.112996.
  67. Distribution, Accumulation and Eco-Toxicological Effects of Antibiotics in Aquatic Environment / Liu J. et al. // Adm. Tech. Environ. Monit. 2012. Vol. 24. P. 14—20.
  68. Evaluation of Factors Influencing Annual Occurrence, Bioaccumulation, and Biomagnification of Antibiotics in Planktonic Food Webs of a Large Subtropical River in South China / Tang J. et al. // Water Res. 2020. Vol. 170. 115302. doi:10.1016/j.watres.2019.115302. 
  69. Bioconcentration, Metabolism, and Biomarker Responses in marine Medaka (Oryzias Melastigma) Exposed to Sulfamethazine / Zhao S. et al. // Aquat. Toxicol. 2016. Vol. 181. P. 29—36. doi: 10.1016/j.aquatox.2016.10.026.
  70. Molecular identification of Streptococcus sp. and antibiotic resistance genes present in Tilapia farms (Oreochromis niloticus) from the northern pacific region, Costa Rica / Oviedo-Bolaños K. et al. // Aquacul. Int. 2021. Vol.  29. P.  2337—2355. doi : 10.1007/s10499-021-00751-0.
  71. The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments / Zeballos-Gross D. et al. // A Scoping Review. 2021. https://doi.org/10.3389/fmicb.2021.703886.
  72. Prenatal and post-natal Exposure to Antibiotics and Risk of Asthma in Childhood / Metsälä J. et al. // Clin. Exp. Allergy. 2015. Vol. 45. P. 137—145. doi: 10.1111/cea.12356.
  73. Lactobacillus Fermentum NS9 Restores the Antibiotic Induced Physiological and Psychological Abnormalities in Rats / Wang T. et al. // Beneficial Microbes. 2015. Vol. 6. P. 707—717. doi:10.3920/bm2014.0177.
  74. Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis / Möhle L. et al. // Cel Rep. 2016. Vol. 15. P. 1945—1956. doi: 10.1016/j.celrep.2016.04.074.
  75. The Effect of Mangiferin against Brain Damage Caused by Oxidative Stress and Inflammation Induced by Doxorubicin / Siswanto S. et al. // HAYATI J. Biosciences. 2016. Vol. 23. P. 51—55. doi: 10.1016/j.hjb.2016.02.001.
  76. Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome after Murine Stroke / Winek K. et al. // Stroke. 2016. Vol. 47. P. 1354—1363. doi: 10.1161/strokeaha.115.011800.
  77. Enzymatic‐microwave assisted extraction and high‐performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples / Fernandez‐Torres R. et al. // J. Pharm. Biomed. Anal. 2011. Vol.  54. P. 1146—1156. doi:10.1016/j.jpba.2010.12.002.
  78. Multi‐residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves / Alvarez‐Muñoz D. et al. // Talanta. 2015. Vol.  136. P. 174—182. doi: 10.1016/j.talanta.2014.12.035.
  79. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment / Xie H. et al. // Sci. Total. Environ. 2019. Vol. 659. P. 230—239. doi: 10.1016/j.scitotenv.2018.12.222.
  80. Combining an effect‐based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment / Serra‐Compte A. et al. // Environ. Pollut. 2021. Vol.  27. 116313. doi:10.1016/j.envpol.2020.116313.
  81. The European Commission Regulation (EU No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin // Off. J. Eur. Union. 2010. L15/1‐72.
  82. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore / Bayen S. et al. // Mar. Pollut. Bull. 2016. Vol. 109. P. 716—722. doi: 10.1016/j.marpolbul.2016.06.105.
  83. Occurrence and toxicity of antibiotics in the aquatic environment: A review / Kovaláková P. et al. // Chemosphere. 2020. Vol. 251. 126351. doi: 10.1016/j.chemosphere.2020.126351.
  84. FAO Global Aquaculture Production 1950-2015. Sofia, Bulgaria : FAO, 2016.
  85. Maximum Residue Limits of Veterinary Drugs in Animal Foods. Notice No. 235. Beijing : Ministry of Agriculture, P.R. of C. Minist. Agric., 2002. (in Chinese). URL : www.msybeijing.com (accessed: 09.11.2021).
  86. Method validation andт reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary / Klosterhaus S. L. et al. // Environ. Int. 2013. Vol. 54. P. 92—99. doi:10.1016/j.envint.2013.01.009.
  87. Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated wastewater effluent / Dodder N. G. et al. // Mar. Pollut. Bull. 2014. Vol. 81. P. 340—346. doi :10.1016/j.marpolbul.2013.06.041.
  88. The Mussel Watch California pilot study on contaminants of emerging concern (CECs): Synthesis and next steps / Maruya K. A. et al. // Mar. Pollut. Bull. 2014. Vol. 81. P. 355—363, doi: 10.1016/j.marpolbul.2013.04.023.
  89. Biodegradation of Sulfonamides by Shewanella Oneidensis MR-1 and Shewanella Sp. Strain MR-4 / Mao F. et al. // Biodegradation. 2018. Vol. 29. P. 129—140. doi: 10.1007/s10532-017-9818-5.
  90. Kara Fox. The World’s Rivers Are Contaminated with Antibiotics, New Study shows [EB/OL]. CNN, 2019. URL : https://edition.cnn.com/2019/05/27/health/antibiotics-contaminate-worlds-rivers-intl-scli/index.html (accessed: 27.05.2019).