Ribogospod. nauka Ukr., 2023; 1(63): 3-32
DOI: https://doi.org/10.15407/fsu2023.01.003
УДК 628.394.1:615

The problem of contamination of aquatic ecosystems with antibiotics (a review)

V. Shepelevych, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
A. Berezkina, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
T. Tretiakova, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
N. Matvienko, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv

Purpose: To analyze and summarize information on the problem of contamination of aquatic ecosystems with antibiotics.

Findings: The presented work describes global risks associated with the presence of antibiotics in the aquatic environment and aquatic organisms, and demonstrates quantitative and qualitative assessment of contamination with antibiotic residues in ocean aquatic resources using bivalves.

Practical value. The review can be useful for the public engaged in ecology, agriculture, veterinary medicine, and fisheries; for experts in the field of pharmacology and microbiology. This paper can also be interesting for teachers and students of field-oriented universities.

Keywords: Antibiotics, wastewater contamination with antibiotics, antibiotic resistance, stability genes, aquatic biocenoses, aquaculture, bivalve molluscs.


  1. Baralla, Elena, Demontis, Maria P., Dessì, Filomena, & Varoni, Maria V. (2021). An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms; Source. Animals, 11. doi: 10.3390/ani11113239
  2. Baralla, E., Pasciu,V., Varoni, M. V., Nieddu, M., Demuro, R., & Demontis, M. P. (2021). Bisphenols’ occurrence in bivalves as sentinel of environmental contamination. Sci. Total. Environ., 785, 147263. doi:10.1016/j.scitotenv.2021.147263.
  3. Larsson, D. G. J. (2014). Antibiotics in the environment. Upsala J. Med. Sci., 119, 108-112. doi: 10.3109/03009734.2014.896438.
  4. Martínez-Morcillo, S., Rodríguez-Gil, J. L., Fernández-Rubio, J., Rodríguez-Mozaz, S., Míguez-Santiyán, M. P., Valdes, M. E., Barceló, D., & Valcárcel, Y. (2020). Presence of pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk assessment for human health: Results from a case study in North-Western Spain. Int. J. Hyg. Environ. Health, 223, 10-21. doi: 10.1016/j.ijheh.2019.10.011.
  5. Kümmerer, K. (2009). Antibiotics in the aquatic environment—A review—Part I. Chemosphere, 75, 417-434. doi: 10.1016/j.chemosphere.2008.11.086.
  6. Zhao, J.-L., Liu, Y.-S., Liu, W.-R., Jiang, Y.-X., Su, H.-C., Zhang, Q.-Q., & Chen X.-W., et al. (2015). Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environ. Pollut., 198, 15-24. doi: 10.1016/j.envpol.2014.12.026.
  7. Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2012). Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China. Environ. Pollut.,162, 56-62. doi: 10.1016/j.envpol.2011.10.022.
  8. Xu, J., Zhang, Y., Zhou, C., Guo, C., Wang, D., Du, P., Luo, Y., Wan, J., & Meng, W. (2014). Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci. Total Environ., 497-498, 267-273. doi: 10.1016/j.scitotenv.2014.07.114.
  9. Qiulian, Y., Gao, Y., Ke, J., Loke Show, P., Ge, Y., Liu, Y., Guo, R., & Chen, J. (2021). Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376-7416. doi:10.1080/21655979.2021.1974657.
  10. Tran, N. H., Chen, H., & Reinhard, M., et al. (2016). Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res., 104, 461-472. https://doi.org/10.1016/j.watres.2016.08.040 
  11. Wang J., Chu L., & Wojnarovits L., et al. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci Total Environ, 744, 140997. https://doi.org/10.1016/j.scitotenv.2020.140997 
  12. Mello, F. V., Cunha, S. C., Fogaça, F. H., Alonso, M. B., Torres, J. P. M., & Fernandes, J. O. (2022). Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. Sci. Total Environ., 803, 149744. doi: 10.1016/j.scitotenv.2021.149744.
  13. Mackie, R. I., Koike, S., Krapac, I., Chee-Sanford, J., Maxwell, S., & Aminov, R. I. (2006). Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim. Biotechnol., 17, 157-176. doi: 10.1080/10495390600956953.
  14. Zhou, J., Yun, X., Wang, J. T., Li, Q., & Wang, Y. L. (2022). A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicol. Rep.,9, 534-540. doi: 10.1016/j.toxrep.2022.03.034.
  15. Zhang, R., Pei, J., Zhang, R., Wang, S., Zeng, W., Huang, D., Wang, Y., Zhang, Y., Wang, Y., & Yu, K. (2018). Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China: Bioconcentration and diet safety of seafood. Ecotoxicol. Environ. Saf., 154, 27-35. doi: 10.1016/j.ecoenv.2018.02.006. 
  16. Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska, E. (2020). Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol., 866, 172813. doi: 10.1016/j.ejphar.2019.172813.
  17. Sosa-Hernández, J. E., Rodas-Zuluaga, L. I., López-Pacheco, I. Y., Melchor-Martínez, E. M., Aghalari, Z., Limón, D.S., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation Case Studies in Chemical and Environmental Engineering, 4.  https://doi.org/10.1016/j.cscee.2021.100127.
  18. Chiesa, L. M., Nobile, M., Malandra, R., Panseri, S., & Arioli, F. (2018). Occurrence of antibiotics in mussels and clams from various FAO areas. Food Chem., 240, 16-23. doi: 10.1016/j.foodchem.2017.07.072.
  19. Massey, L. B., Haggard, B. E., Galloway, J. M., Loftin, K. A., Meyer, M. T., & Green, W. R. (2010). Antibiotic fate and transport in three effluent-dominated Ozark streams. Ecol. Eng., 36, 930-938. doi: 10.1016/j.ecoleng.2010.04.009. 
  20. Martins, M., Sanches, S., & Pereira, I. A. C. (2018). Anaerobic Biodegradation of Pharmaceutical Compounds: New Insights into the Pharmaceutical-Degrading Bacteria. J. Hazard. Mater., 357, 289-297. doi:10.1016/j.jhazmat.2018.06.001.
  21. Han, Q. F., Zhao, S., Zhang, X. R., Wang, X. L., Song, C., & Wang, S. G. (2020). Distribution, Combined Pollution and Risk Assessment of Antibiotics in Typical marine Aquaculture Farms Surrounding the Yellow Sea, North China. Environ. Int., 138, 105551. doi:10.1016/j.envint.2020.105551.
  22. He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., & Sun, R., et al. (2020). Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water, 4, 1-11. https://doi.org/10.1038/s41545-020-0051-0  
  23. Xu, C., Kong, L., Gao, H., Cheng, X., & Wang, X. (2022). A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol., 13, 822689. doi: 10.3389/fmicb.2022.822689.
  24. Liu, Z. H., Wang, K., Zhang, Y. R., Xia, L. N., Zhao, L., & Guo, C. M., et al. (2022). High prevalence and diversity characteristics of blaNDM, mcr, and blaESBLs harboring multidrug-resistant Escherichia coli from chicken, pig, and cattle in China. Front. Cell. Infect. Microbiol., 11, 755545. doi: 10.3389/fcimb.2021.755545.
  25. Yan, H., Li, Y., Zhang, Y., Zhang, H., Guo, Z., & Liu, J. (2021). Deciphering of microbial diversity and antibiotic resistome of bioaerosols in swine confinement buildings. Sci. Total Environ., 781, 147056. doi: 10.1016/j.scitotenv.2021.147056.
  26. Larsson, D. G. J., & Flach, C.-F. (2022). Antibiotic resistance in the environment. Nat. Rev. Microbiol.,20, 257-269. doi: 10.1038/s41579-021-00649-x.
  27. Hu, Y., Yang, X., Li, J., Lv, N., Liu, F., & Wu, J., et al. (2016). The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl. Environ. Microbiol.,82, 6672-6681. doi: 10.1128/AEM.01802-16.
  28. WHO. (2018). WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early Implementation. Geneva, Switzerland: WHO.
  29. Top lekarstv v Ukraine 2020-2021. liki24.com. Retrieved from: https://liki24.com/uk/articles/top-lekarstv-v-ukraine-2020-2021.
  30. Bin Zaman, S., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 9,  e1403,  doi:10.7759/cureus.1403.
  31. Mcinnes, R. S., Mccallum, G. E., Lamberte, L. E., & Van Schaik, W. (2020). Horizontal Transfer of Antibiotic Resistance Genes in the Human Gut. Microbiome. Curr. Opin. Microbiol. 53, 35-43. doi:10.1016/j.mib.2020.02.002.
  32. Sobhani, I., Bergsten, E., Couffin, S., Amiot, A., Nebbad, B., & Barau, C., et al. (2019). Colorectal Cancer-Associated Microbiota Contributes to Oncogenic Epigenetic Signatures. Proc. Natl. Acad. Sci. USA, 116, 24285-24295. doi:10.1073/pnas.1912129116.
  33. Bai, H., He, L. Y., Wu, D. L., Gao, F. Z., Zhang, M., & Zou, H. Y., et al. (2021). Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk. Environ. Int., 158, 106927. doi: 10.1016/j.envint.2021.106927.
  34. Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: a developing country-perspective. Front. Microbiol.,7, 1881. doi: 10.3389/fmicb.2016.01881.
  35. Sirichokchatchawan, W., Apiwatsiri, P., Pupa, P., Saenkankam, I., Khine, N. O., & Lekagul, A., et al. (2021). Reducing the risk of transmission of critical antimicrobial resistance determinants from contaminated pork products to humans in south-east Asia. Front. Microbiol.,12, 689015. doi: 10.3389/fmicb.2021.689015.
  36. Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist., 12, 3903-3910. doi:10.2147/idr.s234610.
  37. Antimicrobial resistance (2021). ahpsr.who.int. Retrieved from: https://ahpsr.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance.
  38. Hernandez-Gonzalez, J. C., Martinez-Tapia, A., Lazcano-Hernandez, G., Garcia-Perez, B. E., & Castrejon-Jimenez, N. S. (2021). Bacteriocins from lactic acid bacteria. a powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals (Basel), 11, 979. doi: 10.3390/ani11040979.
  39. Ho, Y. B., Zakaria, M. P., Latif, P. A., & Saari, N. (2013). Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour. Technol., 131, 476-484. doi: 10.1016/j.biortech.2012.12.194.
  40. Hoppin, J. A., Umbach, D. M., Long, S., Rinsky, J. L., Henneberger, P. K., & Salo, P. M., et al. (2014). Respiratory disease in united states farmers. Occup. Environ. Med., 71, 484-491. doi: 10.1136/oemed-2013-101983.
  41. Wilkinson, John, L., Boxalla, Alistair B. A., Kolpinb, Dana W., & oLeungc, Kenneth M. Y., et al. (2021). Pharmaceutical pollution of the world’s rivers. Environmental sciences.https://doi.org/10.1073/pnas.2113947119.
  42. Zhu, Y.‐G., Johnson, T. A., Su, J.‐Q., Qiao, M., Guo, G.‐X., Stedtfeld, R. D., Hashsham, S., & Tiedje, J. M. (2013). Diverseandabundant antibiotic resistance genes in Chinese swine farms. Proc.  Natl.  Acad.  Sci.  USA, 110, 3435-3440. doi:10.1073/pnas.1222743110.
  43. Kovaláková, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., & Sharma, V. K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351. doi:10.1016/j.chemosphere.2020.126351.
  44. Grenni, P., Ancona, V., & Barra Caracciolo, A. (2018). Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchemical J., 136, 25-39. doi: 10.1016/j.microc.2017.02.006.
  45. Chen, H.,  Liu,  S.,  Xu,  X.‐R.,  Liu,  S.‐S.,  Zhou,  G.,  Sun,  K.‐F., Zhao,  J.‐L.,  & Ying,  G.‐G.  (2015). Antibiotics in typical marine aquaculture farms surrounding Hailing Island,  South China:  Occurrence,  bioaccumulation and human dietary exposure. Mar.  Pollut.  Bull., 90, 181-187. doi: 10.1016/j.marpolbul.2014.10.053.
  46. Bin Zaman,  S.,  Hussain,  M.A.,  Nye,  R.,  Mehta,  V.,  Mamun,  K.T.,  & Hossain, N. (2017). A Review on Antibiotic Resistance:  Alarm Bells are Ringing. Cureus, 9, e1403, doi:10.7759/cureus.1403.
  47. Kummerer, K. (2009). Antibiotics in the Aquatic Environment - A Review. Part I. Chemosphere, 75, 347-354. doi: 10.1016/j.position.2008.11.08610.1016/ j.chemosphere.2008.12.006.
  48. Zhang, Y., Yan, X., Sun, Y., Wu, H., & Lu, J. (2019). Current Situation of Antibiotic Abuse in China and its Residues Distribution in the Environment. Contemp. Chem. Ind., 48, 2660-2662.
  49. Tang, J., Shi, T., Wu, X., Cao, H., Li, X., & Hua, R., et al. (2015). The Occurrence and Distribution of Antibiotics in Lake Chaohu, China: Seasonal Variation, Potential Source and Risk Assessment. Chemosphere, 122, 154-161. doi: 10.1016/j.chemosphere.2014.11.032.
  50. Binh, V. N., Dang, N., Anh, N. T. K., Ky, L. X., & Thai, P. K. (2018). Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy. Chemosphere, 197, 438-450. doi: 10.1016/j.chemosphere.2018.01.061HYPERLINK «https://doi.org/10.1016/j.chemosphere.2018.01.061».HYPERLINK «https://doi.org/10.1016/j.chemosphere.2018.01.061»
  51. Grenni, P., Ancona, V., & Barra Caracciolo, A. (2018). Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchemical J.,136, 25-39. doi: 10.1016/j.microc.2017.02.006.
  52. Yang Y., Liu Z., Xing S., & Liao X. (2019). The correlation between antibiotic resistance gene abundance and microbial community resistance in pig farm wastewater and surrounding rivers. Ecotox. Environ. Safe., 182, 109452. doi: 10.1016/j.ecoenv.2019.109452.
  53. Teixeira, J. R., & Granek, E. F. (2017). Effects of environmentally-relevant antibiotic mixtures on marine microalgal growth. Sci Total Environ., 580, 43-49. https://doi.org/10.1016/j.scitotenv.2016.11.207 
  54. Lanzky, P. F., & Halling-Sørensen, B. (1998). The Toxic Effect of the Antibiotic Metronidazole on Aquatic Organisms. Chemosphere, 35, 2553-2561. doi: 10.1016/S0045-6535(97)00324-X.
  55. Yamaguchi, K., Beligni, M. V., Prieto, S., Haynes, P. A., McDonald, W. H., & Yates, J. R., et al. (2003). Proteomic Characterization of the Chlamydomonas Reinhardtii Chloroplast Ribosome. J. Biol. Chem.,278, 33774-33785. doi: 10.1074/jbc.M301934200.
  56. Yamaguchi, K., & Subramanian, A. R. (2003). Proteomic Identification of All Plastid-specific Ribosomal Proteins in Higher Plant Chloroplast 30S Ribosomal Subunit. PSRP-2 (U1A-type Domains), PSRP-3alpha/beta (Ycf65 Homologue) and PSRP-4 (Thx Homologue). Eur. J. Biochem.,270, 190-205. doi: 10.1046/j.1432-1033.2003.03359x.
  57. Brain, R. A., Johnson, D. J., Richards, S. M., Sanderson, H., Sibley, P. K., & Solomon, K. R. (2004). Effects of 25 Pharmaceutical Compounds to Lemna Gibba Using a Seven-Day Static-Renewal Test. Environ. Toxicol. Chem.,23, 371-382. doi: 10.1897/02-576.
  58. Brain, R. A., Hanson, M. L., Solomon, K. R., & Brooks, B. W. (2008). Aquatic Plants Exposed to Pharmaceuticals: Effects and Risks. Rev. Environ. Contam. T.,192, 67-115. doi: 10.1007/978-0-387-71724-1_3.
  59. Baran, W., Adamek, E., Ziemiańska, J., & Sobczak, A. (2011). Effects of the Presence of Sulfonamides in the Environment and Their Influence on Human Health. J. Hazard. Mater.,196, 1-15. doi: 10.1016/j.jhazmat.2011.08.082.
  60. Yuan, X., & Chen, W. (2012). Use of veterinary Medicines in Chinese Aquaculture: Current Status. Italy: FAO.
  61. Ouda, M., Kadadou, D., Swaidan, B., Al‐Othman, A., Al‐Asheh, S., Banat, F., & Hasan, S.W. (2021). Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. Sci. Total Environ., 754, 142177. https://doi.org/10.1016/j.scitotenv.2020.142177 
  62. Baralla, E., Pasciu, V., Varoni, M. V., Nieddu, M., Demuro, R., & Demontis, M. P. (2021). Bisphenols’ occurrence in bivalves as sentinel of environmental contamination. Sci. Total. Environ., 785, 147263. doi: 10.1016/j.scitotenv.2021.147263.
  63. Farrington, J. W., Tripp, B. W., Tanabe, S., Subramanian, A., Sericano, J. L., Wade, T. L., Knap, A. H., & Edward, D. (2016). Goldberg’s proposal of “the Mussel Watch”: Reflections after 40 years. Mar. Pollut. Bull., 110, 501-510. doi:10.1016/j.marpolbul.2016.05.074.
  64. Harnisz, M., Korzeniewska, E., & Golas, I. (2015). The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere,128, 134-141. doi: 10.1016/j.chemosphere.2015.01.035.
  65. Ranjan, R., & Thatikonda, S. (2021). β-Lactam resistance gene ndm-1 in the aquatic environment: a review. Curr. Microbiol., 78, 3634-3643. doi: 10.1007/s00284-021-02630-6.
  66. Liu, X., Guo, X., Liu, Y., Lu, S., Xi, B., & Zhang, J., et al. (2019). A Review on Removing Antibiotics and Antibiotic Resistance Genes from Wastewater by Constructed Wetlands: Performance and Microbial Response. Environ. Pollut.,254, 112996. doi:10.1016/j.envpol.2019.112996.
  67. Liu, J., Lu, G., Yang, X., & Jin, S. (2012). Distribution, Accumulation and Eco-Toxicological Effects of Antibiotics in Aquatic Environment. Adm. Tech. Environ. Monit.,24, 14-20.
  68. Tang, J., Wang, S., Tai, Y., Tam, N. F., Su, L., & Shi, Y., et al. (2020). Evaluation of Factors Influencing Annual Occurrence, Bioaccumulation, and Biomagnification of Antibiotics in Planktonic Food Webs of a Large Subtropical River in South China. Water Res.,170, 115302. doi: 10.1016/j.watres.2019.115302.
  69. Zhao, S., Wang, X., Li, Y., & Lin, J. (2016). Bioconcentration, Metabolism, and Biomarker Responses in marine Medaka (Oryzias Melastigma) Exposed to Sulfamethazine. Aquat. Toxicol.,181, 29-36. doi: 10.1016/j.aquatox.2016.10.026.
  70. Oviedo-Bolaños, K., Rodríguez-Rodríguez, J. A., Sancho-Blanco, C., Barquero-Chanto, J. E., Peña-Navarro, N., & Escobedo-Bonilla, C. M., et al. (2021). Molecular identification of Streptococcus sp. and antibiotic resistance genes present in Tilapia farms (Oreochromis niloticus) from the northern pacific region, Costa Rica. Aquacul. Int.,29, 2337-2355. doi: 10.1007/s10499-021-00751-0.
  71. Zeballos-Gross, D., Rojas-Sereno, Z., Salgado-Caxito, M., Poeta, P., Torres, C., & Benavides, J. A. (2021). The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review.https://doi.org/10.3389/fmicb.2021.703886.
  72. Metsälä, J., Lundqvist, A., Virta, L. J., Kaila, M., Gissler, M., & Virtanen, S. M. (2015). Prenatal and post-natal Exposure to Antibiotics and Risk of Asthma in Childhood. Clin. Exp. Allergy,45, 137-145. doi: 10.1111/cea.12356.
  73. Wang, T., Hu, X., Liang, S., Li, W., Wu, X., & Wang, L., et al. (2015). Lactobacillus Fermentum NS9 Restores the Antibiotic Induced Physiological and Psychological Abnormalities in Rats. Beneficial Microbes,6, 707-717. doi: 10.3920/bm2014.0177.
  74. Möhle, L., Mattei, D., Heimesaat, M. M., Bereswill, S., Fischer, A., & Alutis, M., et al. (2016). Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cel Rep.,15, 1945-1956. doi: 10.1016/j.celrep.2016.04.074.
  75. Siswanto, S., Arozal, W., Juniantito, V., Grace, A., Agustini, F. D., & Nafrialdi, N. (2016). The Effect of Mangiferin against Brain Damage Caused by Oxidative Stress and Inflammation Induced by Doxorubicin. HAYATI J. Biosciences,23, 51-55. doi: 10.1016/j.hjb.2016.02.001.
  76. Winek, K., Engel, O., Koduah, P., Heimesaat, M. M., Fischer, A., & Bereswill, S., et al. (2016). Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome after Murine Stroke. Stroke,47, 1354-1363. doi: 10.1161/strokeaha.115.011800.
  77. Fernandez‐Torres, R., López, M. A. B., Consentino, M. O., Mochon, M. C., & Payán, M. R. (2011). Enzymatic‐microwave assisted extraction and high‐performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples. J. Pharm. Biomed. Anal., 54, 1146-1156. doi:10.1016/j.jpba.2010.12.002.
  78. Alvarez‐Muñoz, D., Huerta, B., Fernández‐Tejedor, M., Rodríguez‐Mozaz, S., & Barceló, D. (2015). Multi‐residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. Talanta, 136, 174-182. doi:10.1016/j.talanta.2014.12.035.
  79. Xie, H., Hao, H., Xu, N., Liang, X., Gao, D., Xu, Y., Gao, Y., Tao, H., & Wong, M. (2019). Pharmaceuticals and personal care products in  water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and  health risk assessment. Sci. Total. Environ., 659, 230-239. doi:10.1016/j.scitotenv.2018.12.222.
  80. Serra‐Compte, A., Pikkemaat, M.G., Elferink, A., Almeida, D., Diogène, J., Campillo, J.A., Llorca, M., Álvarez‐Muñoz, D., Barceló, D., & Rodríguez‐Mozaz, S. Combining an effect‐based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment. Environ. Pollut., 271, 116313,  doi: 10.1016/j.envpol.2020.116313.
  81. The European Commission Regulation (EU No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. (2010). Off. J. Eur. Union, L15, 1‐72.
  82. Bayen, S., Estrada, E. S., Juhel, G., Kit, L.W., & Kelly, B. C. (2016). Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore. Mar. Pollut. Bull., 109, 716-722, doi: 10.1016/j.marpolbul.2016.06.105.
  83. Kovaláková, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., & Sharma, V. K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351. doi:10.1016/j.chemosphere.2020.126351.
  84. FAO. (2016). FAO Global Aquaculture Production 1950-2015. Sofia, Bulgaria: FAO.
  85. Maximum Residue Limits of Veterinary Drugs in Animal Foods. Minist. Agric. Beijing(in Chinese) (2002). Notice No. 235, Ministry of Agriculture, P.R. of C. msybeijing.com. Retrieved from: www.msybeijing.com.
  86. Klosterhaus, S. L., Grace, R., Hamilton, M. C., & Yee, D. (2013). Method validation andт reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ. Int., 54, 92-99. doi: 10.1016/j.envint.2013.01.009.
  87. Dodder, N. G., Maruya, K. A., Ferguson, P. L., Grace, R., Klosterhaus, S., La Guardia, M., Lauenstein, G. G., & Ramirez, J. (2014). Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated wastewater effluent. Mar. Pollut. Bull., 81, 340-346, doi: 10.1016/j.marpolbul.2013.06.041.
  88. Maruya, K. A., Dodder, N. G., Weisberg, S. B., Gregorio, D., Bishop, J. S., Klosterhaus, S., Alvarez, D. A., Furlong, E. T., Bricker, S., & Kimbrough, K. L., et al. (2014). The Mussel Watch California pilot study on contaminants of emerging concern (CECs): Synthesis and next steps. Mar. Pollut. Bull., 81, 355-363, doi: 10.1016/j.marpolbul.2013.04.023.
  89. Mao, F., Liu, X., Wu, K., Zhou, C., & Si, Y. (2018). Biodegradation of Sulfonamides by Shewanella Oneidensis MR-1 and Shewanella Sp. Strain MR-4. Biodegradation, 29, 129-140. doi: 10.1007/s10532-017-9818-5.
  90. Kara, Fox. (2019). CNN. The World’s Rivers Are Contaminated with Antibiotics, New Study shows [EB/OL]. edition.cnn.com. Retrieved from: https://edition.cnn.com/2019/05/27/health/antibiotics-contaminate-worlds-rivers-intl-scli/index.html.