УДК 597–115:597.554.3

pdf35

ПЕРЕВАГИ ВИКОРИСТАННЯ DANIO RERIO ЯК МОДЕЛЬНОЇ СИСТЕМИ У ДОСЛІДЖЕННЯХ БІЛКА р53

О. В. Залоїло,  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її. , Інститут рибного господарства НААН, м. Київ

Наведено короткий літературний огляд переваг використання риби Danio rerio як модельної системи у дослідженнях білка р53. Описано структуру та функції р53 у Danio rerio, взаємодію р53 із злоякісними пухлинами, процеси регуляції р53, а також розглянуто участь р53 у онтогенезі та канцерогенезі.

ЛІТЕРАТУРА
1. De Leo A.B., Jay G., Appella E., Dubois G.C., Law L., Old L.J. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse // Proc Natl Acad Sci USA. — 1979. — Vol. 76. — P. 2420–2424.
2. Kress M., May E., Cassingena R., May P. Simian Virus 40-transformed cells express new species of pro- teins precipitable by anti-simian virus 40 serum // J. Virol. — 1979. — Vol. 31. — P. 472–483.
3. Lane D.P., Crawford L.V. T antigen is bound to a host protein in SV40-transformed cells // Nature.
— 1979. — Vol. 278. — P. 261–263.
4. Linzer D.H., Levine A.J. Characterization of a 54 K dalton cellular SV40 tumor antigen resent in SV40-transformed cells and in infected embryonal carcinoma cells // Cell. — 1979. — Vol. 1. — P. 43–52.
5. Melero J.A., Stitt D.T., Mangel W.F., Carroll R.B. Identification of new polypeptide species (48–55K) immunoprecipitable by antiserum to purified large T antigen and present in simian virus 40-infected and transformed cells // J. Virol. — 1979. — Vol. 93. — P. 466–480.
6. Levine A.J. The p53 tumour suppressor gene and product // Cancer Surv. — 1992. — Vol. 2. — P. 59–79.
7. Levine A.J., Momand J., Finlay C.A. The p53 tumour suppressor gene // Nature. — 1991. — Vol. 351. — P. 453–456.
8. Fakharzadeh S.S., Trusko S.P., George D.L. Tumorigenic potential associated with enhanced expres- sion of a gene that is amplified in a mouse tumor cell line // EMBO J 10. — 1991. — Vol. 6. — P. 1565–1569.
9. Lyapustin V.N., Svitkin Yu.V., Lashkevich V.A. Synthesis of virus-specific proteins in tick-borne encephalitis virus-infected pig embryo kidney cells // Acta Virol. 24. — 1980. — Vol 5. — P. 305–310.
10. Langheinrich U., Hennen E., Stott G., Vacun G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling // Curr Biol. — 2002. — Vol. 12. — P. 2023–2028.
11. Lee H., Kimelman D. A dominant-negative form of p53 is required for epidermal proliferation in zebrafish // Dev Cell. — 2002. — Vol. 2. — P. 607–616.
12. Driever W., Solnica-Krezel L., Schier A.F., Neuhauss S.C., Malicki J., Stemple D.L., Stainier D.Y., Zwartkruis F., Abdelilah S., Rangini Z., Belak J., Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish // Development. — 1996. — Vol. 123. — P. 37–46.
13. Melancon, E., Liu D.W., Westerfield M., Eisen J.S. Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers // J. Neurosci. — 1997. — Vol. 17. — P. 7796–7804.
14. Higashijima S., Okamoto H., Ueno N., Hotta Y., Eguchi G. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin // Dev. Biol. — 1997. — Vol. 192. — P. 289–299.
15. Long Q., Meng A., Wang H., Jessen J.R., Farrell M.J., Lin S. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene // Development. — 1997. — Vol. 124. — P. 4105–4111.
16. Scheer N., Campos-Ortega A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish // Mech. Dev. — 1999. — Vol. 80. — P. 153–158.
17. Ceol C.J., Houvras Y., White R.M., Zon L.I. Melanoma biology and the promise of zebrafish // Zebrafish. — 2008. — Vol. 5. — P. 247–255.
18. Kutok J.L., Fletcher C.D., Morris J.P., Liu T.X., Schulte-Merker S., Kanki J.P. p53 mutant zebrafish develop malignant peripheral nerve sheath tumors // Proc Natl Acad Sci. — 2005. — Vol. 102. — P. 407–412.
19. Milner J. A conformation hypothesis for the suppressor and promoter functions of p53 in cell growth control and in cancer // Proc R Soc Lond [Biol.]. — 1991. — Vol. 245. — P. 139–145.
20. Cheng R., Ford B.L., O’Neal P.E., Mathews C.Z., Bradford C.S., Thongtan T., Barnes D.W., Hendricks J.D., Bailey G.S. Zebrafish (Danio rerio) p53 tumor suppressor gene: cDNA sequence and expres- sion during embryogenesis // Mol Mar Biol Biotechnol. — 1997. — Vol. 6. — P. 88–97.
21. Thisse C., Neel H., Thisse B., Daujat S., Piette J. The Mdm2 gene of zebrafish (Danio rerio): prefer- ential expression during development of neural and muscular tissues, and absence of tumor forma- tion after overexpression of its cDNA during early embryogenesis // Differentiation. — 2000. — Vol. 66. — P. 61–70.
22. Schmid P., Lorenz A., Hameister H., Montenarh M. Expression of p53 during mouse embryogenesis // Development. — 1991. — Vol. 113. — P. 857–865.
23. Berghmans S., Murphey R.D., Wienholds E., Neuberg D., Kutok J.L., Christopher D., Fletcher M., Morris J.P., Liu Ting Xi, Schulte-Merker S., Kanki J.P., Plasterk R., Zon Leonard I., Thomas A. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors // LookPNAS | January 11, 2005. — Vol. 102. — № 2. — Р. 407–412.
24. Robu M.E., Larson J.D., Nasevicius A., Beiraghi S., Brenner C., Farber S.A., Ekker S.C. p53 activation by knockdown technologies // PLoS Genet. — 2007. — Vol. 3. — P. 78–82.
25. Lee K.C., Goh W.L., Xu M., Kua N., Lunny D., Wong J.S., Coomber D., Vojtesek B., Lane E.B., Lane D.P. Detection of the p53 response in zebrafish embryos using new monoclonal antibodies // Oncogene. — 2008. — Vol. 27. — P. 629–640.
26. Jones S.N., Roe A.E., Donehower L.A., Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53 // Nature. — 1995. — Vol. 378. — P. 206–208.
27. Miller C.W., Aslo A., Won A., Tan M., Lampkin B., Koeff ler H.P. Alterations of the p53, Rb and MDM2 genes in osteosarcoma // J Cancer Res Clin Oncology. — 1996. — Vol. 122, № 9. — P. 559–565.
28. Ygal Haupt, Ruth Maya, Anat Kazaz, Moshe Oren. Mdm2 promotes the rapid degradation of p53 // Nature. — 1997. — Vol. 387. — P. 296–299.
29. Sah V.P., Attardi L.D., Mulligan G.J., Williams B.O., Bronson R.T., Jacks T. A subset of p53-deficient embryos exhibit exencephaly // Nat Genet. — 1995. — Vol. 10. — P. 175–180.
30. Vogel K.S., Klesse L.J., Velasco-Miguel S., Meyers K., Rushing E.J., Parada L.F. Mouse tumor model for neurofibromatosis type 1 // Science. — 1999. — Vol. 286. — P. 2176–2179.
31. Montes de Oca Luna R., Wagner D.S., Lozano G. Rescue of early embryonic lethality in mdm2-de- ficient mice by deletion of p53 // Nature. — 1995. — Vol. 378. — P. 203–206.
32. So Yeon Kim, Wonhee Hur, Jung-Eun Choi, Daniel Kim, Jin Sang Wang, Hye-Yeon Yoon, Lian-Shu Piao, Seung Kew Yoon. Functional characterization of human oncoprotein gankyrin in Zebra- fish // Korean Society of Medical Biochemistry and Molecular Biology. — 2009. — Vol. 41, № 1. — P. 8–16.
33. Brose M.S., Volpe P., Feldman M., Kumar M., Rishi I., Gerrero R., Einhorn E., Herlyn M., Minna J., Nicholson A. BRAF and RAS mutations in human lung cancer and melanoma // Cancer Res. — 2002.
— Vol. 62. — P. 6997–7000.
34. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Gar- nett M.J., Bottomley W. Mutations of the BRAF gene in human cancer // Nature. — 2002. — Vol. 417. — P. 949–954.
35. Tuveson D.A.,Weber B.L., Herlyn M. BRAFas a potential therapeutic target in melanoma and other malignancies // Cancer Cell. — 2003. — Vol. 4. — P. 95–98.
36. Langenau D.M., Keefe M.D., Storer N.Y., Guyon J.R., Kutok J.L., Le X., Goessling W., Neuberg D.S., Kunkel L.M., Zon LI. Effects of RAS on the genesis of embryonal rhabdomyosarcoma // Genes Dev.
— 2007. — Vol. 21. — P. 1382–1395.
37. Brooks C.L., Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation // Curr Opin Cell Biol. — 2003. — Vol. 15. — P. 164–171.
38. Kaufmann W.K., Nevis K.R., Qu P., Ibrahim J.G., Zhou T., Zhou Y., Simpson D.A., Helms-Deaton J., Cordeiro-Stone M., Moore D.T. Defective cell cycle checkpoint functions in melanoma are as- sociated with altered patterns of gene expression // J Invest Dermatol. — 2008. — Vol. 128. — P. 175–187.
39. Bourdon J.C., Fernandes K., Murray-Zmijewski F., Liu G., Diot A., Xirodimas D.P., Saville M.K., Lane D.P. p53 isoforms can regulate p53 transcriptional activity // Genes Dev. — 2005. — Vol. 19. — P. 2122–2137.
40. Bakkers J., Hild M., Kramer C., Furutani-Seiki M., Hammerschmidt M. Zebrafish Delta Np53 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm // Dev Cell. — 2002. — Vol. 2. — P. 617–627.
41. Chen J., Ng S.M., Chang C., Zhang Z., Bourdon J.C., Lane D.P., Peng J. p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish // Genes Dev. — 2009. — Vol. 23. — P. 278–290.
42. Chen J., Ruan H., Ng S.M., Gao C., Soo H.M., Wu W., Zhang Z., Wen Z., Lane D.P., Peng J. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish // Genes Dev. — 2005. — Vol. 19. — P. 2900–2911.
43. Amsterdam A., Sadler K.C., Lai K., Farrington S., Bronson R.T., Lees J.A., Hopkins N. Many ribosomal protein genes are cancer genes in zebrafish // PLoS Biol. — 2004. — Р. 139.
44. Golling G., Amsterdam A., Sun Z., Antonelli M., Maldonado E., Chen W., Burgess S., Haldi M., Artzt K., Farrington S. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development // Nat Genet. — 2002. — Vol. 31. — P. 135–140.
45. Armstrong J.F., Kaufman M.H., Harrison D.J., Clarke A.R. High-frequency developmental abnormali- ties in p53-deficient mice // Curr. Biol. — 1995. — Vol. 5. — P. 931–936.
46. Lai K., Amsterdam A., Farrington S., Bronson R.T., Hopkins N., Lees J.A. Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish // Dev. Dyn. — 2009. — Vol. 238. — P. 76–85.
47. Macinnes A.W., Amsterdam A., Whittaker C.A., Hopkins N., Lees J.A. Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations // Proc Natl Acad Sci. — 2008. — Vol. 105. — P. 10408–10413.
48. Danilova N., Sakamoto K.M., Lin S. Ribosomal protein S19 deficiency in zebrafish leads to devel- opmental abnormalities and defective erythropoiesis through activation of p53 protein family // Blood. — 2008. — Vol. 112. — P. 5228–5237.
49. Chakraborty A., Uechi T., Higa S., Torihara H., Kenmochi N. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response // PLoS One. — 2009. — Vol. 4. — P. 4152–4159.
50. Azuma M., Toyama R., Laver E., Dawid I.B. Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system // J Biol Chem. — 2006.
— Vol. 281. — P. 13309–13316.
51. Skarie J.M., Link B.A. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway // Hum. Mol. Genet. — 2008. — Vol. 17. — P. 2474–2485.
52. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. — 2004. — Vol. 116. — P. 281–297.
53. Sinha A.U., Kaimal V., Chen J., Jegga A.G. Dissecting microregulation of a master regulatory network // BMC Genomics. — 2008. Vol. 9. — P. 88–94.