pdf35

Ribogospod. nauka Ukr., 2025; 4(74): 207-236
DOI: https://doi.org/10.61976/fsu2025.04.207
UDC 597-115:[639.371.2:639.3.06]

Cytogenetic assessment of the sturgeon (Acipenseridae) hybrid bester on the first year of cultivation using warm wastewater from a power plant

Yu. Glushko, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-1479-2948,  Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
O. Tretiak, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0003-2300-9115, Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
Yu. Onyshchuk, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0009-0008-3445-0436, Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
O. Kolos, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0009-0008-9312-1368, Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv

Purpose. Assessment of cytogenetic indicators of the sturgeon (Acipenseridae) hybrid bester in the first year of cultivation under conditions of increased heat load with the introduction of the probiotic “Subalin” into the diet.

Methodology. The study was carried out in 2025 in the conditions of the Biosila LLC farm, in the technological cycle of which warm waste water from the power plant is used. Age-0+ were grown in tanks with feeding them with a commercial compound feed with additional introduction to the diet of the drug “Subalin” – a probiotic based on Bacillus subtillis. The assessment of fish productive parameters and physicochemical factors of the environment was carried out using common methods. Cytogenetic studies with micronucleus testing in peripheral blood cells of bester were performed based on the count of erythrocytes with micronuclei, lymphocytes with micronuclei, binuclear lymphocytes and apoptosis in at least of 1000 cells. Blood smears were examined using a Primo Star binocular microscope (Carl Zeiss Jena) with a magnification of 100×/1.25 with immersion. The obtained values ​​of cytogenetic abnormalities were expressed in ppm (‰).

Findings. At the final stage of growing bester, the water temperature for 33 days ranged from 28.1 to 31.3°C (on average, it was 30.1°C), which significantly exceeds the recommended values ​​(no more than 25–26°C). The hydrochemical parameters of the tank environment were suitable for sturgeon aquaculture with a slight excess of individual regulatory values. In the experimental group of fish (n=15) with the introduction of the probiotic “Subalin” into the diet, the average weight of the bester was 128.80±3.42 g (Cv=10.29%). In the control group of fish (n=15), grown without adding probiotic to the diet, the average weight was 110.73±2.86 g (Cv=9.99%). The studied bester groups had a relatively low average level of the count of erythrocytes with micronuclei (from 4.1±0.2 to 4.4±0.3‰). No statistically significant intergroup differences were found in the count of lymphocytes with micronuclei, with slightly lower values ​​in the experimental group of fish (1.2±0.2‰ versus 1.5±0.2‰ in the control). At the same time, a comparative analysis of the level of detected binuclear lymphocytes showed that the experimental group of bester had statistically significantly lower values ​​of this parameter (2.0±0.2‰ versus 3.1±0.2‰ in the control). This may indicate a more stable genetic apparatus of the experimental group of fish, whose diet was supplemented with the probiotic “Subalin”.

Originality. For the first time in sturgeon aquaculture in Ukraine, the feasibility of performing cytogenetic assessment of bester juveniles based on analysis of the level of destabilization of the chromosomal apparatus of fish has been substantiated.

Practical Value. The results of the study can be used to improve technological schemes for intensive sturgeon farming and develop a system for controlling the genetic structure of breeding sturgeon stocks, which is critically important for preserving their gene pool.

Keywords: sturgeon aquaculture, bester juvenile, intensive cultivation, heat stress, probiotic “Subalin”, micronucleus test, cytogenetic disorders.

REFERENCES

  1. Tretiak, O. M., Hrytsyniak, I. I., Kotsiuba, V. M., & Hankevych, B. O. (2008). Biolohichna kharakterystyka ta tekhnolohichni pryi­omy kultyvuvannia dodatkovykh i netradytsiinykh obiektiv rybnytstva. Fermerske rybnytstvo. Kyiv: Herb, 333-361.
  2. Tretiak, O. M., Hankevych, B. O., Kolos, O. M., & Yakovleva, T. V. (2010). Stan zapasiv osetrovykh ryb ta rozvytok osetrovoji akvakuljtury v Ukrajini. Ryboghospodarska nauka Ukrainy, 4, 4-22.
  3. Bondarchuk, M. Ye., & Khartii, M. V. (2022). Svitovi tendentsii rozvytku rynku ikrianykh tovariv. Efektyvna ekonomika, 2. www.economy.nayka.com.ua. Retrieved from : http://www.economy.nayka.com.ua/?op=1&z=10014. https://doi.org/10.32702/2307-2105-2022.2.77.
  4. Onyshchuk, Yu., Tretiak, O., & Kolos, O. (2025). Effect of probiotic “Subalin” on the productive parameters of age-0+ sturgeon hybrid (Acipenseridae) — bester under conditions of thermal load. Fisheries Science of Ukraine, 2(72), 136-153. https://doi.org/10.61976/fsu2025.02.136.
  5. Zaloilo, I. A., Zaloilo, O. V., Rud, Yu. P. & Hrytsyniak, I. I. (2021). Zastosuvannia probiotykiv u akvakulturi. Rybohospodarska nauka Ukrainy, 2, 59-81. https://doi.org/10.15407/fsu2021.02.059.
  6. Zarantoniello, M., Randazzo, B., & Nozzi, V., et al. (2021). Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Scientific Reports, 11, 1057. https://doi.org/10.1038/s41598-020-80379-x.
  7. Dobryanska, O., Deren, O., Simon, M., & Kolesnik, R. (2022). Use of prebiotic “Actigen” in fish feeding (a review). Fisheries Science of Ukraine, 3, 53-70. https://doi.org/10.15407/fsu2022.03.053 
  8. Deák, G., Burlacu1, L., Lumânăroiu1, L., Jawdhari, A., Gheorghe, P. I., Raischi, M., Holban, E., & Zakarya, I. A. (2023). Captive growth analysis of Siberian sturgeon juveniles (Acipenser baerii J. F. Brandt, 1869) fed on a commercial fodder and its importance to a sustainable development of the aquaculture sector. IOP Conference Series. Earth and Environmental Science, 1216(1), 012021. https://doi.org/10.1088/1755-1315/1216/1/012021.
  9. Zabytivskyi, Yu., Boretska, I., Kachai, H., Yurchak, S., & Tretiakova, T. (2023). Biolohichni osoblyvosti orhanizmu molodi osetrovykh (Acipenseridae Bonaparte, 1831) ryb za dii syntetychnoho ta orhanichnoho imunostymuliatoriv. Rybohospodarska nauka Ukrainy, 2, 109-128. https://doi.org/10.15407/fsu2023.02.109.
  10. Zabytivskyi, Yu. M., Tuchapskyi, Ya. V., Dobrianska, O. P., Boretska, I. M., & Vishchur O. I. (2024). Vplyv kompleksu probiotychnykh mikroorhanizmiv rodu Bacillus na rist, histolohichnu strukturu kyshechnyka ta opirnist orhanizmu molodi hibryda osetra. Rybohospodarska nauka Ukrainy, 3(69), 130-146. https://doi.org/10.61976/fsu2024.03.130.
  11. Pourmoradkhani, F., Moghanlou, K. S., Sohrabi, T., Imani, A, Gholizadeh, V., & Anzabi, M. P. (2024). Supplementation of Siberian sturgeon (Acipenser baerii) diet with different zinc sources: Effects on growth performance, digestive enzymes activity, hemato-biochemical parameters, antioxidant response and liver histology. Veterinary Research Communications, 48(2), 797-810. https://doi.org/10.1007/s11259-023-10252-5.
  12. Tretiak, O. M., Hlushko, Yu. M., & Tarasiuk, S. I. (2010). Sezonna minlyvist tsytohenetychnykh kharakterystyk u veslo nosa. Rybohospodarska nauka Ukrainy, 3, 25-31. fsu.ua. Retrieved from: https://fsu.ua/images/jurnal/2010-03/2010-03_025-31Tretyak.pdf.
  13. Bestin, A., Brunel, O., Malledant, A., Debeuf, B., Benoit, P., Mahla, R., Chapuis, H., Guémené, D., Vandeputte, M., & Haffray, P. (2021). Genetic parameters of caviar yield, color, size and firmness using parentage assignment in an octoploid fish species, the Siberian sturgeon Acipenser baeri. Aquaculture, 540, 1-7. https://doi.org/10.1016/j.aquaculture.2021.736725.
  14. Belikova, O. Yu., Mariutsa, A. E., & Tretiak O. M. (2022). Analiz spetsyfiky henetychnoi struktury veslonosa (Polyodon spathula (Walbaum, 1792)) iz zastosuvanniam ISSR-markeriv. Rozvedennia i henetyka tvaryn, 63, 153-160. https://doi.org/10.31073/abg.63.14.
  15. Mariutsa, A. E., Pashko, S. M., & Tretiak, O. M. (2023). Henetychna struktura sybirskoho osetra (Acipenser baerii Brandt, 1869) za vykorystannia mizhmikrosatelitnoho analizu. Suchasni problemy ratsionalnoho vykorystannia vodnykh bioresursiv: V Mizhnarodna naukovo-praktychna konferentsiia. Kyiv: PRO FORMAT, 155-159. if.org.ua. Retrieved from: https://if.org.ua/images/konf/2023kiev/2023kyiv.pdf.
  16. Glushko, Y., Nahorniuk, T., & Tretiak, O. (2023). Genetic variability of paddlefish (Polyodon spathula (Walbaum, 1972)) brood stocks in aquaculture of Ukraine. SOFAS 2023: International Symposium on Fisheries and Aquatic Sciences, 24-26 October, 2023, Trabzon, Turkey: proceed. Trabzon, 40. drive.google.com. Retrieved from: https://drive.google.com/file/d/1-p1LeDY8Ph35LzvNen0Z9GShx4f5k2-O/view?usp=drive_link.
  17. Hlushko, Yu. M., Tretiak, O. M., & Pashko, S. M. (2024). Tsytohenetychna otsinka sybirskoho osetra (Acipenser baerii Brandt, 1869). Suchasni problemy ratsionalnoho vykorystannia vodnykh bioresursiv: VI Mizhnarodna naukovo-praktychna konferentsiia.Kyiv: PRO FORMAT, 177-178. if.org.ua. Retrieved from: https://if.org.ua/images/konf/2024kiev/2024kyiv.pdf.
  18. Moraes de Andrade, V., Silva, J., Rabaioli Da Silva, F., & Heuser, V. (2004). Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test Environ. Mol. Mutagen, 44, 459-468. https://doi.org/10.1002/em.20070 
  19. Hussain, B., Sultana, T., Sultana, S., Masoud, M., Ahmed, Z., & Mahboob S. (2018). Fish ecogenotoxicology: Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution. Saudi Journal of Biological Sciences, 25(2), 393-398. https://doi.org/10.1016/j.sjbs.2017.11.048.
  20. Battistelli, V., Brustenga, L., La Porta, G., Baccianella, M., & Lucentini, L. (2025). Erythrocyte Micronuclei and Nuclear Abnormalities in Three Species of Fish from Lake Piediluco (Central Italy). Limnol. Rev., 25,19. https://doi.org/10.3390/limnolrev25020019.
  21. Machado Da Rocha, C., Alves Dos Santos, R., De Oliveira Bahia, M., & Araujo Da Cunha, L., Ribeiro, H., Mario Rodr, R., et al. (2009). The Micronucleus Assay in Fish Species as an Important Tool for Xenobiotic Exposure Risk Assessment. Reviews in Fisheries Science, 17, 478-484. https://doi.org/10.1080/10641260903067852 
  22. Bavi, Z., Zakeri, M., Mousavi, S. M., & Yavari, V. (2022). Еffects of dietary taurine on growth, body composition, blood parameters, and enzyme activities of juvenile sterlet (Аcipenser ruthenus). Aquaculture Nutrition, 1, 1713687. https://doi.org/10.1155/2022/1713687.
  23. Gazo, I., Franěk, R., Šindelka, R., Lebeda, I., Sahana, S., Pšenička, M., & Steinbach C. (2021). Аncient sturgeons possess effective DNA repair mechanisms: influence of model genotoxicants on embryo development of sterlet, Acipenser ruthenus. International Journal of Molecular Sciences, 22(1), 1-6. https://doi.org/10.3390/ijms22010006.
  24. Obiakor, M. O., Okonkwo, J. C., Nnabude, P., & Ezeonyejiaku, C. D. (2012). Eco-genotoxicology: micronucleus assay in fish erythrocytes as in situ Aquatic Pollution Biomarker. Journal of Animal Science Advances, 2(1), 123-133.
  25. Tretiak, O., Onyshchuk, Yu., Kolos, O., Hankevych, B., & Pashko, S. (2024). Ecological aspects of using heat waste water of energy facilities for sturgeon (Acipenseridae) aquaculture. Fisheries Science of Ukraine, 3(69), 42-62. https://doi.org/10.61976/fsu2024.03.042.
  26. Tretiak, O. M., Onyshchuk, Yu. V., & Kolos, O. M. (2025). Rezultaty vidtvorennia ta vyroshchuvannia molodi bestera za industrialnykh tekhnolohii osetrivnytstva z kombinovanoiu systemoiu vodopostachannia. Suchasni problemy ratsionalnoho vykorystannia vodnykh bioresursiv: VII Mizhnar. Naukovo-praktychna konferentsiia: Kyiv: PRO FORMAT, 203-207.
  27. Pylypenko, Yu. V., Shevchenko, P. H., & Tsedyk, V. V. (2017). Metody ikhtiolohichnykh doslidzhen. Kherson: Oldi-Plius.
  28. Ievtushenko, M. Yu. (2013). Metodyka doslidzhen u rybnytstvi. Kyiv.
  29. Nabyvanets, B. Y., Osadchyi, V. I., Osadcha, N. M., & Nabyvanets, Yu. B. (2007). Analitychna khimiia poverkhnevykh vod. Kyiv: Naukova dumka.
  30. Arsan, O. M., Davydov, O. Ya., Diachenko, T. M., at al. (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv: Lohos.
  31. Voda rybohospodarskykh pidpryiemstv. Zahalni vymohy ta normy. (2006). SOU-05.01.-37-385:2006. Standart minahropolityky Ukrainy. Kyiv: Ministerstvo ahrarnoi polityky Ukrainy.
  32. Stoika, Yu. O., Haranko, N. M., & Arkhypchuk, V. V. (2001). Rozrobka pryzhyttievoho mikroiadernoho testu na rybakh. Naukovi zapysky Ternopilskoho derzhavnoho pedahohichnoho universytetu im. V. Hnatiuka, 4 (15), 157-159.
  33. Petrovska, I., Salyha, Yu., & Vudmaska, I. (2022). Statystychni metody v biolohichnykh doslidzhenniakh: navchalno-metodychnyi posibnyk. Kyiv: Ahrarna nauka.
  34. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. (2010). Official Journal. L. 276:0033-0079.
  35. Poriadok provedennia naukovymy ustanovamy doslidiv, eksperymentiv na tvarynakh: Nakaz Ministerstva osvity i nauky, molodi ta sportu Ukrainy vid 01.03.2012 r. № 249 r. (2012). Ofitsiinyi visnyk Ukrainy, 06 kvitnia, 82, st. 942, kod aktu 60909/2012. zakon.rada.gov.ua. Retrieved from:  https://zakon.rada.gov.ua/laws/show/z0416-12#Text.
  36. Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutat. Researches, 343, 2-3, 121-135.https://doi.org/10.1016/0165-1218(95)90078-0  
  37. Kozii, M. S., Sherman, I. M., & Lianzberh, O. V., et al. (2011). Atlas histolohii ta embriolohii promyslovykh ryb: Navch. posib. Kherson.
  38. Harding, S. M. Benci, J. L., Irianto, J., Discher, D., Minn, A. J., & Greenberg, R. A. (2017). Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature,548, 466-470, https://doi.org/10.1038/nature23470.
  39. Zapata, A. G. (2022). Lympho-hematopoietic microenvironments and fish immune system. Biology, 11, 747. https://doi.org/10.3390/biology11050747.
  40. Kamel Ahmad, & Jaber Salehl (2010). Clastogenic studies on tandaha dam water in asser. Mediterranean Environment, 16, 1, 33-42.
  41. Bickham, J. W. Rowe, G. T., Palatnikov, G., Mekhtiev, A., Mekhtiev, M., Kasimov, R. Y., Hauschultz, D. W., Wickliffe, J. K., & Rogers, W. J. (1998). Acute and genotoxic effects of Baku harbor sediment on Russian sturgeon, Acipenser guildensteidti. Bulletin of Environmental Contamination and Toxicology, 61, 512-518. https://doi.org/10.1007/s001289900792.