Ribogospod. nauka Ukr., 2025; 3(73): 146-181
DOI: https://doi.org/10.61976/fsu2025.03.146
UDC 639.371.52:[639.3.032:597-115](4-015)
History of carp (Cyprinus carpio Linnaeus, 1758) breeding in Ukraine and Eastern Europe and modern genetic assessments of populations (review)
E. Drobot,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0009-0003-0161-9462, National University of Life and Environmental Sciences of Ukraine, Kyiv
V. Martseniuk,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0002-5351-1977, National University of Life and Environmental Sciences of Ukraine, Kyiv
Purpose. The article reviews the historical development and current approaches to selective breeding of common carp (Cyprinus carpio L.) in Ukraine and Eastern European countries — Poland, the Czech Republic, and Hungary. Particular attention is given to the assessment of genetic diversity within carp populations using microsatellite markers (SSRs), which are currently considered a leading tool in studies of intra-breed and intra-population genetic structure under conditions of intensive aquaculture. The aim of the study is to justify the necessity of preserving traditional lines and incorporating molecular-genetic methods into breeding programs.
Findings. The paper analyzes research results concerning the genetic structure of farmed carp populations. In many cases, reduced heterozygosity was observed due to limited broodstock use, the Wahlund effect, lack of rotational breeding, and selection against heterozygotes. At the same time, certain lines maintain genetic stability and may serve as valuable material for breeding programs. In the Ukrainian context, the Antoninsko-Zozulenetsky carp type was found to exhibit high allelic richness, significant intergroup differentiation, and a predominance of heterozygotes, indicating favourable selection potential. Polish studies demonstrate the genetic isolation of lines and the risks of diversity loss due to the marginalization of traditional pond aquaculture. In Hungary, the effectiveness of measures to preserve genetic heterogeneity has been confirmed, while the Czech experience underscores the importance of tagging and regularly updating broodstock.
Practical Value. The integration of microsatellite analyzis into national programs for the conservation and improvement of carp populations is substantiated. Such approaches can enhance the effectiveness of selective breeding, safeguard local genotypes, and ensure genetic resilience under conditions of intensified aquaculture. The experiences of Eastern European countries confirm that the implementation of molecular methods in practice helps reduce the risk of genetic degradation and supports the long-term stability of genetic structures.
Keywords: common carp (Cyprinus carpio L.), aquaculture, selective breeding, strains, genetic variation, microsatellites, gene pool.
REFERENCES
- Flajšhans, M., & Hulata, G. (2006). Common Carp—Cyprinus carpio. Genimpact Final Scientific Report, 32-39.
- Teletchea, F., & Fontaine, P. (2014). Levels of domestication in fish: Implications for the sustainable future of aquaculture. Fish and Fisheries, 15(2), 181-195.
- Kohlmann, K., Gross, R., Murakaeva, A., & Kersten, P. (2003). Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquatic Living Resources, 16(5), 421-431. https://doi.org/10.1016/S0990-7440(03)00082-2.
- Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237.
- Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to conservation genetics. Cambridge: Cambridge University Press.
- Ryder, O. A. (1987). Conservation action for gazelles: An urgent need. Trends in Ecology & Evolution, 2, 143-144.
- Andarz, B., Kamali, A., Avakh Keysami, M., & Rajabi Islami, H. (2022). Comparison of common carp (Cyprinus carpio L.) fecundity in two provinces of the southern part of the Caspian Sea in relation to the genetic variations. Iranian Journal of Fisheries Sciences, 21(4), 902-914. https://doi.org/10.22092/ijfs.2022.127397.
- Veličković, T., Snoj, A., Bravničar, J., Simić, V., Šanda, R., Vukić, J., Barcytė, D., Stanković, D., & Marić, S. (2024). Population-genetics analysis of the brown trout broodstock in the “Panjica” hatchery (Serbia) and its conservation applications. Knowledge and Management of Aquatic Ecosystems, 425, 19. https://doi.org/10.1051/kmae/2024014.
- Sumana, S. L., Liao, Y., Zhang, C., Jing, X., Zhu, J., Tang, Y., Liu, W., & Su, S. (2024). Genetic diversity of the common black carp strain (Cyprinus carpio var. baisenensis). Diversity, 16(7), 413. https://doi.org/10.3390/d16070413.
- Kuzʹoma, O. I. (1962). Vyvedennia novoi vysokoproduktyvnoi porody koropa dlia rybhospiv zakhidnykh oblastei URSR. Pidvyshchennia produktyvnosti rybnykh stavkiv. Lviv, 44-51.
- Yarova, I. S., Zaloilo, O. V., Bekh, V. V., & Zaloilo, I. A. (2017). Analysis of genetic diversity of Galician carp population on the base of fish farm “Velykyy Lyubin” with using microsatellite markers. Rybogospodarska Nauka Ukrainy, 3(41), 76-82. https://doi.org/10.15407/fsu2017.03.076.
- Hrytsyniak, I. I., & Hurbik, V. V. (2016). Istorychni aspekty rybohospodarsʹkoho vykorystannia Halytsʹkoho koropa (ohliad). Rybogospodarska Nauka Ukrainy, 3(37), 76-87. http://doi.org/10.15407/fsu2016.03.076.
- Kurinenko, H. A., Hrystyniak, I. I., Chernyk, Yu. P., Kuts, U. S., & Popyk, L. P. (2023). Characteristics of productivity parameters of age-1 carps of Nesvich zonal type. Rybogospodarska Nauka Ukrainy, 2(64), 61-70. https://doi.org/10.15407/fsu2023.02.061.
- Hrytsyniak, I. I., Tretiak, O. M., & Syrovatka, N. Yu. (2024). Some results of scientific activity of the Institute of Fisheries of NAAS for 2019–2023. Modern problems of rational use of aquatic bioresources: the 6th International Scientific-Practical Conference(Kyiv, Ukraine, October 9–10, 2024): proceed. Kyiv: PRO FORMAT, 14-19. https://doi.org/10.61976/conf.IF-2024-6.
- Sherman, I. M., Hrynzhevsʹkyi, M. V., & Hrytsyniak, I. I. (1999). Rozvedennia i selektsiia ryb. Kyiv: BTM.
- Hrynzhevsʹkyi, M. V., Sherman, I. M., & Hrytsyniak, I. I., et al. (2006). Orhanizatsiia selektsiĭno-pleminnoi roboty v rybnytstvi. Kyiv: Rybka moia.
- Tomilenko, V., Bekh, V., Oleksiyenko, O., & Pavlischenko, V. (2012). Structuring of the Ukrainian Carp Breeds. Rybohospodarsʹka nauka Ukrainy, 2(20), 83-87. fsu.ua. Retrieved from: https://fsu.ua/index.php/en/2012/2-2012-20/2012-02-083-087.
- Oleksiienko, O. O., & Hrytsyniak, I. I. (2007). Selektsiĭna robota z koropom: analiz suchasnoho stanu v Ukraini. Rybohospodarsʹka nauka Ukrainy, 1, 22-27.
- Oborskiy, V., Hrytsyniak, I., Osipenko, M., Grishin, B., Nagorniuk, T., & Kurinenko, H. (2022). The role of Antoninsko-Zozulenets carp in selective breeding in Ukraine (a review). Rybohospodarsʹka nauka Ukrainy, 3(61), 31-52. https://doi.org/10.15407/fsu2022.03.031.
- Bekh, V. V. (2001). Otsinka plidnykiv maloluskatogo koropa za kompleksom reproduktyvnykh pokaznykiv. Visnyk ahrarnoi nauky, 9, 39-41.
- Bekh, V. V. (2009). Ekonomichna efektyvnistʹ vyroshchuvannia maloluskatogo vnutrishnoporidnoho typu ukrainsʹkoi ramchastoi porody koropa. Rybohospodarsʹka nauka Ukrainy, 2, 110-113.
- Bekh, V. V. (2009). Maloluskatyi korop novoho typu. Tvarynnytstvo Ukrainy, 1, 7-10.
- Nahorniuk, T. A., Oleksiienko, O. O., & Tarasiuk, S. I. (2011). Henetychni ta ekster’ierni osoblyvosti ukrainskykh luskatoho i ramchastoho koropiv antoninsko-zozulenetskoho typu. Rybohospodarska nauka Ukrainy, 4, 99-106.
- Nahorniuk, T. A., Zaloilo, O. V., & Tarasiuk, S. I. (2013). Analiz henetychnoi struktury koropa antoninsko-zozulenetskoho typu. Visnyk ahrarnoi nauky, 9, 36-40.
- Tarasiuk, S. I., Mariutsa, A. E., & Nahorniuk, T. A. (2012). Dynamika henetychnoi struktury luskatoho i ramchastoho koropiv antoninsko-zozulenetskoho typu. Visnyk ahrarnoi nauky, 2, 41-46.
- Gurbyk, V. V., Hlushko, Yu. M., Hrytsyniak, I. I., & Tushnytska, N. Y. (2019). Cytogenetic profile of different groups of the Halych carp in conditions of industrial aquaculture in Subcarpathia ponds. Rybohospodarska nauka Ukrainy, 4(50), 87-94. https://doi.org/10.15407/fsu2019.04.087.
- Kuts, U. S., Kurinenko, H. A., Tuchapskyi, Ya. V., Buriak, I. V., & Hrytsyniak, I. I. (2021). Characteristics of economic indicators of growing common carp × Amur wild carp hybrids of different genesis in the conditions of industrial hybridization. Rybohospodarska nauka Ukrainy, 2(56), 82–92. https://doi.org/10.15407/fsu2021.02.082.
- Kurinenko, H. A., & Derenko, A. V. (2024). Assessment of the effect of heterosis by productive parameters of young-of-the-year carps obtained from crossing Ukrainian and Polish breeds. Rybohospodarska nauka Ukrainy, 4(70), 127-144. https://doi.org/10.61976/fsu2024.04.127.
- Grytsyniak, I., Tarasiuk, S., Zaloilo, O., Mariutsa, A., Hlushko, J., & Habuda, O. (2018). Genetic structure of Amur carp selected in “Karpatskyi vodohrai” Ltd. Visnyk ahrarnoi nauky, 96(7), 37-45. https://doi.org/10.31073/agrovisnyk201807-06.
- Hrytsyniak, I., Zaloilo, O., Tarasiuk, S., & Borysenko, N. (2015). Investigation of microsatellite loci for analysis of genetic structure in silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). Animal Breeding and Genetics, 50, 118-124. digest.iabg.org.ua. Retrieved from: https://digest.iabg.org.ua/genetics/item/140-50-017.
- Kuts, U. S., Tarasiuk, S. I., Hrytsyniak, I. I., Zaloilo, O. V., & Kurynenko, H. A. (2021). Comparative analysis of Amur carp (Cyprinus rubrofuscus) produced from native and cryopreserved sperm using microsatellite loci. AACL Bioflux, 14(3), 1396-1405. bioflux.com.ro. Retrieved from: http://www.bioflux.com.ro/docs/2021.1396-1405.pdf.
- Yarova, I., Zaloilo, O., Bech, V., & Zaloilo, I. (2017). Analysis of genetic diversity of Galician carp population on the base of fish farm “Velykyy Lyubin” with using microsatellite. Rybohospodarsʹka nauka Ukrainy, 3(41), 76-82. https://doi.org/10.15407/fsu2017.03.076.
- Mariutsa, A., Borysenko, N., Bielikova, O., Kurinenko, H., Oborskiy, V., & Dyman, T. (2024). Genetic structure of the Antoniny-Zozulenets intrabreed type of Ukrainian leather and scaly carps using microsatellite markers. Genetics of Aquatic Organisms,8(1), GA763. https://doi.org/10.4194/GA763.
- Jewel, M., Rahman, M., & Islam, M. (2006). Study of genetic variation in different hatchery populations of common carp (Cyprinus carpio) of Mymensingh District in Bangladesh using microsatellite DNA markers. Journal of Bio-Science, 14, 113-120. https://doi.org/10.3329/jbs.v14i0.454.
- Guziur, J., Białowąs, H., & Milczarzewicz, W. (2003). Rybactwo stawowe. Warszawa: Hoża.
- Pilarczyk, A. (1998). Wpływ czynników genetycznych i pokarmowych na odpowiedź immunologiczną karpi (Genetic and feeding factors and immune response of common carp). Szczecin: Wydawnictwo Akademii Rolniczej.
- Rakus, K. Ł., Wiegertjes, G. F., Stet, R. J. M., Savelkoul, H. F. J., Pilarczyk, A., & Irnazarow, I. (2003). Polymorphism of MHC class II B genes in different lines of the common carp (Cyprinus carpio L.). Aquatic Living Resources, 16, 432-437.
- Białowąs, H. (1991). Possibilities of application of the heterosis effect in the commercial production of common carp (Cyprinus carpio L.). 1. Production of fingerlings. Acta Hydrobiologica, 33, 319-334.
- Białowąs, H., Irnazarow, I., Pruszyński, T., & Gaj, C. (1997). The effect of heterosis in inter-line crossing of common carp. Archives of Polish Fisheries, 5, 13-20.
- Brzuska, E., & Białowąs, H. (2002). Artificial spawning of carp, Cyprinus carpio (L.). Aquaculture Research, 33, 753-765.
- Brzuska, E. (2005). Artificial spawning of carp (Cyprinus carpio L.): Differences between females of Polish strain 6 and Hungarian strain W treated with carp pituitary homogenate, Ovopel or Dagin. Aquaculture Research, 36, 1015-1025.
- Adamek, M., Rakus, K. Ł., Brogden, G., Matras, M., Chyb, J., Hirono, I., Kondo, H., Aoki, T., Irnazarow, I., & Steinhagen, D. (2014). Interaction between type I interferon and cyprinid herpesvirus 3 in two genetic lines of common carp Cyprinus carpio. Diseases of Aquatic Organisms, 111, 107-118.
- Jurecka, P., Wiegertjes, G. F., Rakus, K. Ł., Pilarczyk, A., & Irnazarow, I. (2009). Genetic resistance of carp (Cyprinus carpio L.) to Trypanoplasma borreli: Influence of transferrin polymorphism. Veterinary Immunology and Immunopathology, 127, 19-25.
- Rakus, K. Ł., Irnazarow, I., Adamek, M., Palmeira, L., Kawana, Y., Hirono, I., Kondo, H., Matras, M., Steinhagen, D., & Flasz, B. (2012). Gene expression analysis of common carp (Cyprinus carpio L.) lines during cyprinid herpesvirus 3 infection yields insights into differential immune responses. Developmental and Comparative Immunology, 37, 65-76.
- Pilarczyk, A., Białowąs, H., Pilarczyk, M., Irnazarow, I., Napora-Rutkowski, Ł., Jurecka, P., Brzuska, E., Cejko, B. I., Ciereszko, A., & Dietrich, M. A. (2017). Charakterystyka zasobów genetycznych karpia: Linie hodowlane w Gołyszu. Polska Akademia Nauk, 15-33.
- Napora-Rutkowski, Ł., Rakus, K., Nowak, Z., Szczygieł, J., Pilarczyk, A., Ostaszewska, T., & Irnazarow, I. (2017). Genetic diversity of common carp (Cyprinus carpio L.) strains bred in Poland based on microsatellite, AFLP, and mtDNA genotype data. Aquaculture, 473, 433-442.
- Hulak, M., Kaspar, V., Kohlmann, K., Coward, K., Tešitel, J., Rodina, M., Gela, D., Kocur, M., & Linhart, O. (2010). Microsatellite-based genetic diversity and differentiation of foreign common carp (Cyprinus carpio) strains farmed in the Czech Republic. Aquaculture, 298(3-4), 194-201.
- Desvignes, J. F., Laroche, J., Durand, J. D., & Bouvet, Y. (2001). Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture, 194, 291-301.
- Lehoczky, I., Magyary, I., Hancz, C., & Weiss, S. (2005). Preliminary studies on the genetic variability of six Hungarian common carp strains using microsatellite DNA markers. Hydrobiologia, 533, 223-228.
- Hoffman, J. I., Dasmahapatra, K. K., Amos, W., Phillips, C. D., Gelatt, T. S., Bickham, J. W. (2009). Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation. Molecular Ecology, 18, 2961-2978.
- Balon, E. K. (1995). Origin and domestication of the wild carp, Cyprinus carpio—from Roman gourmets to the swimming flowers. Aquaculture, 129, 3-48.
- Flajšhans, M., Linhart, O., Šlechtova, V., & Šlechta, V. (1999). Genetic resources of commercially important fish species in the Czech Republic: Present state and future strategy. Aquaculture, 173, 471-483.
- Bakos, J., & Gorda, S. (2001). Genetic resources of common carp at the Fish Culture Research Institute. FAO Fisheries Technical Paper, 417, 1-10.
- Wohlfarth, G., Lahman, M., Hulata, G., & Moav, R. (1980). The story of “Dor-70”, a selected strain of the Israeli common carp. Israeli Journal of Aquaculture – Bamidgeh, 32, 3-5.
- Kirpichnikov, V. S., Ilyassov, Y. I., Shart, L. A., Vikham, A. A., Ganchenko, M. V., Ostashevsky, L. A., Simonov, V. M., Tikhonov, G. F., & Tjurin, V. V. (1993). Selection of Krasnodar common carp (Cyprinus carpio L.) for resistance to dropsy: Principal results and prospects. Aquaculture, 111, 7-20.
- Kohlmann, K., Kersten, P., & Flajšhans, M. (2005). Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture, 247, 253-266.
- FAO. (2018). The state of world fisheries and aquaculture. International Journal of Fisheries and Aquaculture, 10, 1-7.
- Pintér, K. (2003). A magyar halászat helye az Európai Unióban. Halászat, 96, 47-50.
- Lehoczky, I., Kovács, B., Kovács, G., Gorda, S., Péteri, A., & Bakos, J. (2018). A ponty genetikája és erőforrásai. In B. Csorbai & B. Urbányi (Eds.), A ponty (Cyprinus carpio L.) biológiája és tenyésztése. Gödöllő: Vármédia-Print Kft, 9-34.
- Bakos, J., Gorda, S., Váradi, L., & Balogh, J. (1997). Tenyésztő szervezetek szerepe a magyar pontyfajták fenntartásában és nemesítésében. XXI Halászati Tudományos Tanácskozás Szarvas, 32, 25-26.
- Lengyel, P., & Udvari, Z. (2017). A haltenyésztés hatósági feladatainak átszervezése. Halászat, 110, 12-16.
- Gorda, S., & Borbély, A. (2014). Ponty Teljesítményvizsgálat Eredménye. PhD Thesis. Paris: École Polytechnique.
- Tóth, B., Khosravi, R., Ashrafzadeh, M. R., Bagi, Z., Fehér, M., Bársony, P., Kovács, G., & Kusza, S. (2020). Genetic diversity of wild and farmed populations of common carp (Cyprinus carpio) in Iran using microsatellite markers. Genes, 11(11), 1268. https://doi.org/10.3390/genes11111268.
- Treer, T., Safner, R., Aničić, I., Kolak, A., & Dražić, M. (2000). Morphological variation among four strains of common carp Cyprinus carpio in Croatia. Folia Zoologica, 49, 69-74.
- Kánainé Sipos, D., Bakos, K., Osz, Á., Hegyi, Á., Müller, T., Urbányi, B., & Kovács, B. (2019). Development and characterization of 49 novel microsatellite markers in the African catfish, Clarias gariepinus (Burchell, 1822). Molecular Biology Reports, 46, 6599-6608.
- Wang, J., Lei, Q., Jiang, H., Liu, J., Yu, X., Guo, X., & Tong, J. (2025). Genetic diversity among wild and cultured bighead carp (Hypophthalmichthys nobilis) in the Middle Yangtze River by microsatellite markers. Genes,16(5), 586. https://doi.org/10.3390/genes16050586.
- Fraser, D. J. (2008). How well can captive breeding programs conserve biodiversity? A review of salmonids. Evolutionary Applications, 1, 535-586.
- Thrupp, L. A. (2000). Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. International Affairs, 76, 265-281.
- Houston, R. D., Kriaridou, C., & Robledo, D. (2022). Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. Animal, 16(10), 100642. https://doi.org/10.1016/j.animal.2022.100642.
- San Román, I. C., Fleming, I. A., & Duffy, S. J., et al. (2025). Genetic monitoring suggests ongoing genetic change in wild salmon populations due to hybridization with aquaculture escapees. Conservation Genetics, 26, 347-360. https://doi.org/10.1007/s10592-025-01672-8.
- Liu, Q., Wang, S., Tang, C., Tao, M., Zhang, C., Zhou, Y., Qin, Q., Luo, K., Wu, C., Hu, F., Wang, Y., Liu, Q., Li, W., Wang, J., Zhao, R., & Liu, S. (2025). The research advances in distant hybridization and gynogenesis in fish. Reviews in Aquaculture, 17, e12972. https://doi.org/10.1111/raq.12972.
- Brauer, C., Sandoval-Castillo, J., Gates, K., Hammer, M., Unmack, P., Bernatchez, L., & Beheregaray, L. (2023). Natural hybridization reduces vulnerability to climate change. Nature Climate Change, 13, 282-289. https://doi.org/10.1038/s41558-022-01585-1.
- Lynch, M. (1991). The genetic interpretation of inbreeding depression and outbreeding depression. Evolution, 45, 622-629.
- Wohlfarth, G. W. (1993). Heterosis for growth rate in common carp. Aquaculture, 113, 31-46.
- Hulata, G. (1995). A review of genetic improvement of common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. In R. Billard & G. A. E. Gall (Eds.), The Carp Symposium, Budapest, Hungary, September 6–8, 1993. Aquaculture, 129, 143-155.
- Gjedrem, T. (1985). Improvement of productivity through breeding schemes. GeoJournal, 10(3), 233-241.
- Argue, B. J., Liu, Z., & Dunham, R. A. (2003). Dress-out and fillet yields of channel catfish, Ictalurus punctatus, blue catfish, Ictalurus furcatus, and their F1, F2 and backcross hybrids. Aquaculture, 228, 81-90.
- Vetešník, L., Pojezdal, L., Reschová, S., & Šimková, A. (2024). Specific anti-SVCV antibodies in hybrids of common carp (Cyprinus carpio) and gibel carp (Carassius gibelio) reflect heterosis advantage and genetic breakdown. Aquaculture, 593, 741320. https://doi.org/10.1016/j.aquaculture.2024.741320.
- Edmands, S. (1999). Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution, 53, 1757-1768.
- Aoki, R., Matsumasa, T., Kumada, T., Jin, N., & Shukei, M. (2025). Hatchability and growth performance of F1, F2, and backcross progenies of Epinephelus bruneus and Epinephelus lanceolatus. Aquaculture International, 33, 291. https://doi.org/10.1007/s10499-025-01968-z.
- Wang, M., Li, X., Wang, C., Zou, M., Yang, J., Li, X., & Guo, B. et al. (2024). Asymmetric and parallel subgenome selection co-shape common carp domestication. BMC Biology, 22, 4. https://doi.org/10.1186/s12915-023-01806-9.
- David, L., Rosenberg, N. A., Lavi, U., Feldman, M. W., & Hillel, J. (2007). Genetic diversity and population structure inferred from the partially duplicated genome of domesticated carp, Cyprinus carpio L. Genetics Selection Evolution, 39, 319.
- Nielsen, H. M., Ødegård, J., Olesen, I., Gjerde, B., Ardo, L., Jeney, G., & Jeney, Z. (2010). Genetic analysis of common carp (Cyprinus carpio) strains: I: Genetic parameters and heterosis for growth traits and survival. Aquaculture, 304, 14-21.
- Xu, P., Zhang, X., Wang, X., Li, J., Liu, G., Kuang, Y., Xu, J., Zheng, X., Ren, L., & Wang, G., et al. (2014). Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nature Genetics, 46, 1212-1219.
- Šimková, A., Civáňová, K., & Vetešník, L. (2022). Heterosis versus breakdown in fish hybrids revealed by one-parental species-associated viral infection. Aquaculture, 546, 737406. https://doi.org/10.1016/j.aquaculture.2021.737406.
- Shu, L., Ludwig, A., & Peng, Z. (2020). Standards for methods utilizing environmental DNA for detection of fish species. Genes, 11, 296. https://doi.org/10.3390/genes11030296.