pdf35

Ribogospod. nauka Ukr., 2025; 2(72): 154-172
DOI: https://doi.org/10.61976/fsu2025.02.154
UDC [639.3.003.13:597-11]:[639.3.043.13:639.371.52]

Productivity, activity of digestive and antioxidant enzymes of carp (Cyprinus carpio Linnaeus, 1758) as a result of the use of inulin in low-nutrient feeds

O. Deren, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-8246-9456, Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
O. Dobrianska, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0001-7238-5059, Transcarpathian Research Station of Salmon Farming and Reproduction of Endangered Fish Species of the Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Mukachevo
M. Koryliak, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0001-8235-5400, Transcarpathian Research Station of Salmon Farming and Reproduction of Endangered Fish Species of the Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Mukachevo

Purpose. To evaluate the effect and outline the prospects for adding inulin to the low-nutrient diet of carp in accordance with productive parameters, activity of digestive tract enzymes and the antioxidant defense system.

Methodology. Experimental feeding of carp was carried out for 20 days at the laboratory complex of the fish farm «Karpatskyi Vodogray» LLC, Pustomyty, Lviv region. A control and two experimental groups of fish were created, which were kept in identical optimal conditions. Two 200 dm3 tanks were used, each of which contained 20 age-1+ carps with an average initial weight of 64.5 g. Carps of the control group (Control) were fed with a feed mixture with a protein content of 15%. Feed inulin in the amount of 0.2 (Experiment 1) and 0.4% (Experiment 2) was added to the feed of the experimental groups of fish. At the end of the experimental feeding, the selected fish were analyzed for productive parameters, antioxidant and digestive enzyme activity using methods generally accepted in aquaculture.

Findings. The studies showed higher values of morphometric parameters of carps in the experimental groups compared to the control group, which is consistent with productive parameters. The average weight after rearing in Experiment 1 was 14.44% higher than in the control, in Experiment 2 – by 3.84%. The condition factor in the control group was 2.90, in the experimental 2.92 and 2.64, respectively. The relative weight gain of fish in the control group was 6.58%, and it was higher in the experimental group – 9.69 and 7.16%.

A tendency to increase the activity of the enzyme link of the antioxidant defense system of superoxide dismutase by 6.06 (Experiment 1) and 7.13% (Experiment 2) was detected in the liver. At the same time, lower levels of lipid peroxidation products were found: diene conjugates – by 11.46 and 50.70%; TBA-active products – by 3.85 and 16.55%, respectively, that may indicate a decrease in oxidative stress.

The addition of the prebiotic supplement to the diet of age-1+ carp did not cause pathological processes in the functioning of intestinal tract enzymes. An increase in the activity of alkaline phosphatase by 3.03% in Experiment 1 and twice (p < 0.01) in Experiment 2 relative to the control, as well as a slight decrease in the activity of α-amylase, was found, which may indicate adaptation to the new diet.

Originality. Based on a comprehensive ana­lysis of the productive parameters and functional state of the carp body, the prospects for the use of the prebiotic inulin in low-nutrient feeds were investigated for the first time.

Practical Value. The study is aimed at obtaining results to determine the effectiveness of the use of inulin in carp feeding as part of low-nutrient feeds. The practical use of the knowledge gained outlines the possibility of optimizing the production of fish when introducing resource-saving technologies in aquaculture.

Keywords: carp, feed additives, prebiotic, productive parameters, functional state of the body, resource-saving technologies in aquaculture.

REFERENCES

  1. Tacon, A. G. J. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Rev. Fish. Sci. Aquacult., 28, 43-56. https://doi.org/10.1080/233 08249.2019.1649634.
  2. Ruby, P., Ahilan, B., Cheryl, Antony, & Selvaraj, S. (2022). Recent Trends in Aquaculture Technologies. Journal of Aquaculture in the Tropics, 37, 1-4, 29-36. https://doi.org/10.32381/JAT.2022.37.1-4.2.
  3. FAO. (2024). The State of World Fisheries and Aquaculture – Blue Transformation in action. Rome. openknowledge.fao.org. Retrieved from: https://openknowledge.fao.org/server/api/core/bitstreams/53a2c5a2-f531-480c-96c0-706a43480571/content.
  4. Rahayu, S., Amoah, K., Huang, Y., Cai, J., Wang, B., Shija, VM., Jin, X., Anokyewaa, MA., & Jiang, M. (2024). Probiotics application in aquaculture: its potential effects, current status in China and future prospects. Front. Mar. Sci., 11, 1455905. https://doi.org/10.3389/fmars.2024.1455905.
  5. Romanov, G. V., & Deren, O. V. (2023). Osoblyvosti ta perspektyvy vykorystannia roslynnoho bilka v hodivli koropa (Cyprinus carpio Linnaeus, 1758) (ohliad). Ribogospod. nauka Ukr., 1(63), 108-140. https://doi.org/10.15407/fsu2023.01.108.
  6. Deren, O. V., & Fedorenko, M. O. (2023). Obgruntuvannia ta perspektyvy vykorystannia komakh yak dzherela bilka u kormakh dlia ryb (ohliad). Ribogospod. nauka Ukr., 4(66), 114-140. https://doi.org/10.61976/fsu2023.04.114.
  7. Tarasiuk, S. I., Dvoretskyi, A. I., Deren, O. V., & Zaiarko, O. I. (2015). Biolohichni osnovy hodivli ryb. Dnipro: Adverta.
  8. Onomu, A. J., & Okuthe, G. E. (2024). The role of functional feed additives in enhancing aquaculture sustainability. Fishes, 9, 5, 167. https://doi.org/10.3390/fishes9050167.
  9. Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman M., Padeniya, U., Brown, C., & Shahjahan, M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish Shellfish Immunol, 120, 569-589. https://doi.org/10.1016/j.fsi.2021.12.037.
  10. Caipang, Ch., & Lazado, C. (2015). Nutritional impacts on fish mucosa: immunostimulants, pre-, and probiotic. Mucosal Health in Aquaculture. [S. l.] : Academic Press, 212-255. https://doi.org/10.1016/B978-0-12-417186-2.00009-1.
  11. Mahmoud A. O., Dawood, & Shunsuke, Koshio (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454, 243-251. https://doi.org/10.1016/j.aquaculture.2015.12.033.
  12. Damodaran, Arun, Sebastian Jose, Midhun, C. C., Sheeja, Ashuthosh Kumar, Maurya, & Lekha, Divya (2023). Probiotics and prebiotics in aquaculture. Recent advances in aquaculture microbial technology. [S. l.]: Academic Press, 209-226. https://doi.org/10.1016/B978-0-323-90261-8.00005-5.
  13. Alla Devivaraprasad, Reddy, Dharnappa Sannejal, Akhila, Premnath, Ramya, Vittal, Rajeshwari, Guladahalli Manjunatha, Kavitha, & Sanjay Kumar, Gupta (2024). Understanding the role of gut microbiome in response to dietary supplement of prebiotics with reference to aquaculture, Applications of Metagenomics. [S. l.]: Academic Press, 103-127. https://doi.org/10.1016/B978-0-323-98394-5.00007-9.
  14. Harsh, Kumar, Indu, Bhardwaj, Eugenie, Nepovimova, Daljeet Singh, Dhanjal, Sumayya Sana, Shaikh, Renáta, Knop, David, Atuahene, Ayaz, Mukarram Shaikh, & Kovács, Béla (2025). Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. Journal of Agriculture and Food Research, 21, 101859. https://doi.org/10.1016/j.jafr.2025.101859.
  15. Romanenko, V. D. (Ed.). (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv: Lohos.
  16. Voda rybohospodarsʹkykh pidpryyemstv. Zahalʹni vymohy ta normy (2006). SOU-05.01.-37–385:2006. Standart Minahropolityky Ukrainy. Kyiv.
  17. Pravdyn, Y. F. (1939). Rukovodstvo po izucheniiu ryb. Leningrad.
  18. Sherman, I. M., & Rylov, V. H. (2005). Tekhnolohiia vyrobnytstva produktsii rybnytstva. Kyiv: Vyshcha osvita.
  19. Dubinina, E. E., Sal’nikova, L. A., & Efimova, L. F. (1983). Aktivnost’ i izofermentnyj spektr superoksiddismutazy jeritrocitov i plazmy krovi cheloveka. Laboratornoe delo, 10, 30-33.
  20. Koroljuk, M. A., Ivanova, L. I., & Majorova, I. G. (1989). Metod opredelenija aktivnosti katalazy. Laboratornoe delo, 1, 16-19.
  21. Stal’naja, I. D. (1977). Metod opredelenija dienovoj kon’jugacii nenasyshhenyh vysshih zhirnih kislot. Sovremennye metody v biohimii, 63-64.
  22. Korobejnikova, E. N. (1989). Modifikacija opredelenija produktov perekisnogo okislenija lipidov v reakcii s tiobarbiturovoj kislotoj. Laboratornoe delo, 7, 8-9.
  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254. https://doi.org/10.1006/abio.1976.9999   
  24. Instrukciya do naboru reaktyviv dlya vyznachennya aktyvnosti α-amilasy (diastazy) amiloklastychnym metodom Karaveya «alpha-amilaza». (2016). TU U 24.4-13433137-050:2006. DV050 vid 31.03.2016
  25. Instrukciya do naboru reaktyviv dlya vyznachennya aktyvnosti alaninaminotransferazy metodom Raytmana-Frenkelya «AlAT». (2016). TU U 24.4-13433137-047-2003. DV047 vid 30.06.2016.
  26. Instrukciya do naboru reaktyviv dlya vyznachennya aktyvnosti luzhnoi phosfatazy za reakciyeyu z phenilphosfatom (po kinceviy tochci) «Luzhna phosfataza». (2016). TU U 24.4-13433137- 047-2003. DV 047 vid 30.06.2016. https://doi.org/10.1088/1475-7516/2016/06/047 
  27. Instrukciya do naboru reaktyviv dlya vyznachennya aktyvnosti gamma-glutamiltranspeptydazy za reakciyeyu z L-gamma-glutamil-p-nitroanilinom (rozrachunok za kalibruvalnym hrafikom, metodyka – kinceva tochka). «GGTP-kalibrovka». (2016). TU U 24.4-13433137-047-2003. DV 047 vid 30.06.2016.
  28. Kaminskyi, V. F., & Buslaieva, N. H. (2011). Osnovy prykladnoho matematychnoho analizu v silskohospodarskykh doslidzhenniakh. Metodychni rekomendatsii. Kyiv.
  29. Abdullah Al Mamun, Hridoy, Sabyasachi, Neogi, Reashan, Ujjaman, & Mehedi, Hasan (2025). Water quality interactions and their synergistic effects on aquaculture performance in Bangladesh: A critical review. Results in Chemistry, 16, 102306. https://doi.org/10.1016/j.rechem.2025.102306.
  30. Fernández-López, J. A., Alacid, M., Obón, J. M., Martínez-Vives, R., & Angosto, J. M. (2023). Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Applied Sciences, 13, 7, 4154. https://doi.org/10.3390/app13074154.
  31. Martinez-Alvarez, R. M., Morales, A. E., & Sanz, А. (2005). Antioxidant defenses 179 in fish: biotic and abiotic factors. Rev. Fish Biol. Fish, 15, 1, 75-88. https://doi.org/10.1007/s11160-005- 7846-4.
  32. Citarasu, T. (2010). Herbal biomedicines: a new opportunity for aquaculture industry. Aquacult. Inter., 18(3), 403-414. https://doi.org/10.1007/s10499- 009-9253-7.
  33. Vikas, Kumar, Janice A., Ragaza, Kedar N., Mohanta, Shivendra, Kumar, & Narottam P., Sahu (2025). Chemistry and sources of carbohydrates. Nutrition and Physiology of Fish and Shellfish. [S. l.]: Academic Press, 81-121. https://doi.org/10.1016/B978-0-323-90873-3.00002-6.
  34. Lallès, J. P. (2014). Intestinal alkaline phosphatase: novel functions and protective effects Nutr. Rev., 72, 82-94. https://doi.org/10.1111/nure.12082.
  35. Peled, S., & Livney, Y. D. (2021). The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll., 120, 10691. https://doi.org/10691б 10.1016/j.foodhyd.2021.106911.
  36. Harsh, Kumar, Indu, Bhardwaj, Eugenie, Nepovimova, Daljeet Singh, Dhanjal, Sumayya Sana, Shaikh, Renáta, Knop, David, Atuahene, Ayaz Mukarram, Shaikh, & Kovács, Béla (2025). Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. Journal of Agriculture and Food Research, 21, 101859. https://doi.org/10.1016/j.jafr.2025.101859.