Ribogospod. nauka Ukr., 2022; 3(61): 71-104
DOI: https://doi.org/10.15407/fsu2022.03.071
УДК [597-12:576.85]:615

Antiviral vaccines for fish (a review)

Yu. Rud, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the National Academy of Agrarian Sciences, Kyiv
O. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the National Academy of Agrarian Sciences, Kyiv
I. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences of Ukraine, Kyiv
L. Buchatskyi, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the National Academy of Agrarian Sciences, Kyiv

Purpose. To analyze the array of special literature and to summarize the information obtained regarding antiviral vaccines in aquaculture for the prevention of the most common viral diseases of fish.

Findings. An overview of scientific publications devoted to the properties of various antiviral vaccines, which are used in many countries of the world, is presented. Information about commercial vaccines that are available on the world market and experimental developments that are at the stage of prototype or licensing is summarized. Attention is focused on the types of vaccines, namely inactivated, subunit and DNA vaccines, as well as on industrially important fish species for which prophylactic immunization is used. Some aspects of the immune response and the mechanism of action of experimental vaccines against the infectious pancreatic necrosis virus have been revealed.

Practical Value. The review may be useful for academics, post-graduates, veterinary specialists and fish farm owners.

Key words: viruses, vaccines, adjuvants, fish.


  1. Evensen, O. (2016). Development of Fish Vaccines: Focusing on Methods. Fish Vaccines, 53-74. https://doi.org/10.1007/978-3-0348-0980-1_3 
  2. Xu, Z., Parra, D., Gomez, D., Salinas, I., Zhang, Y.A., & von Gersdorff, J. L. et al. (2013). Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci USA, 110, 13097-13102. https://doi.org/10.1073/pnas.1304319110 
  3. Press, C. M., Evensen, O. (1999). The morphology of the immune system in teleost fishes. Fish Shellfish Immunol, 9, 9-12. https://doi.org/10.1006/fsim.1998.0181 
  4. Biering, E., Villoing, S., Sommerset, I., Christie, K. E. (2005). Update on viral vaccines for fish. Dev. Biol., 121, 97-113.
  5. Baxter, D. (2007). Active and passive immunity, vaccine types, excipients and licensing. Occup. Med., 57, 552-556. https://doi.org/10.1093/occmed/kqm110 
  6. Pasquale, A. D., Preiss, S., Silva, F. T., Garcon, N. (2015). Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines, 3, 320-343. https://doi.org/10.3390/vaccines3020320 
  7. Budowsky, E. I., Smirnov, Y., Shenderovich, S. F. (1993). Principles of selective inactivation of viral genome. VIII. The influence of ß-propiolactone on immunogenic and protective activities of influenza virus. Vaccine, 11, 343-348. https://doi.org/10.1016/0264-410X(93)90197-6 
  8. Nagaraju, V. T. (2019). NanoVaccines in aquaculture. Archives of nanomedicine, 2(1), 153-159. doi: 10.32474/ANOAJ.2019.02.000129.
  9. Gomez-Casado, E., Estepa, A., & Coll, J. M. (2011). A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine, 29, 2657-2671. https://doi.org/10.1016/j.vaccine.2011.01.097 
  10. Fuchs, W., Fichtner, D., Bergmann, S. M., & Mettenleiter, T. C. (2011). Generation and characterization of koi herpesvirus recombinants lacking viral enzymes of nucleotide metabolism. Arch. Virol., 156, 1059-1063. https://doi.org/10.1007/s00705-011-0953-8 
  11. Ма, J., Bruce, T., Jones, E., & Cain, K. (2019). A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms, 7, 569-587. https://doi.org/10.3390/microorganisms7110569 
  12. Buchatskyi, L. P., Rud, Yu. P., Zaloilo, O. V., Yashchuk, V. M. (2021). Application of spherical virus-like particles for nanobiotechnology. Conference program and book of abstracts of the 7th International Conference Nanobiophysics: Fundamental and Applied Aspects, 4-8 October 2021, Kharkiv, Ukraine. Kharkiv: FOP Brovin, 34.
  13. Dhar, A. K., Bowers, R. M., Rowe, C. G., & Allnutt, F. T. (2010). Expression of a foreign epitope on infectious pancreatic necrosis virus VP2 capsid protein subviral particle (SVP) and immunogenicity in rainbow trout. Antivir. Res., 85, 525-531. https://doi.org/10.1016/j.antiviral.2009.12.009 
  14. Chien, M. H., Wu, S. Y., & Lin, C. H. (2018). Oral immunization with cell-free self-assembly virus-like particles against orange-spotted grouper nervous necrosis virus in grouper larvae, Epinephelus coioides. Vet. Immunol. Immunopathol., 197, 69-75. https://doi.org/10.1016/j.vetimm.2018.01.012 
  15. Cho, S. Y., Kim, H. J., Lan, N. T., Han, H. J., Lee, D. C. Hwang, J. Y., Kwon, M. G., et al. (2017). Oral vaccination through voluntary consumption of the convict grouper Epinephelus septemfasciatus with yeast producing the capsid protein of red-spotted grouper nervous necrosis virus. Vet. Microbiol., 204, 159-164. https://doi.org/10.1016/j.vetmic.2017.04.022 
  16. Guo, M., Shi, W., Wang, Y., Wang, Y., Chen, Y., Li, D., Ren, X., Hua, X., Tang, L., & Li Y. et al. (2018). Recombinant infectious hematopoietic necrosis virus expressing infectious pancreatic necrosis virus VP2 protein induces immunity against both pathogens. Fish Shellfish Immunol., 78, 187-194.  https://doi.org/10.1016/j.fsi.2018.04.047 
  17. Hølvold, L. B., Myhr, A. I., & Dalmo, R. A. (2014). Strategies and hurdles using DNA vaccines to fish. Vet. Res., 45, 21. doi.org/10.1186/1297-9716-45-21.
  18. Dalmo, R. A. (2018). DNA vaccines for fish: Review and perspectives on correlates of protection. J. Fish Dis., 41, 1-9. https://doi.org/10.1111/jfd.12727 
  19. Matviienko, N. M., & Buchatskyi, L. P. (2014). Vyvchennia reproduktsii virusu hemorahichnoi septytsemii foreli. Visnyk problem biolohii i medytsyny, 2(109), 118-121.
  20. Rud, Yu., Buchatskyi, L., Matvienko, N. (2019). Characterisation of a newly isolated SVCV strain in Ukraine. Biologija, 65(3), 165-173. doi: 10.6001/BIOLOGIJA.V65I3.4085.
  21. Buchatskyi, L. P., Matviienko, N. M., Kharkavliuk, N. (2011). Shtam rabdovirusu ryb dlia otrymannia vaktsyny proty virusu vesnianoi viremii koropa. Patent of Ukraine. № 64561.
  22. Dhar, A. K., Manna, S. K., & Allnutt F. T. (2014). Viral vaccines for farmed finfish. Virus Dis., 25, 1-7. https://doi.org/10.1007/s13337-013-0186-4 
  23. Dixon, P., Stone, D. A. (2017). Spring viraemia of carp. Fish Viruses Bact. Pathobiol. Prot., 26, 79-90. https://doi.org/10.1079/9781780647784.0079 
  24. Embregts, C. W. E., Rigaudeau, D., Tacchia, L. L., Pijlmanc, G. P., & Kampers, L., et al. (2019). Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine. Fish and Shellfish Immunology, 85, 66-77. https://doi.org/10.1016/j.fsi.2018.03.028 
  25. Maistrenko, L. P., & Buchatskyi, L. P. (2014). Biolohiia herpesvirusiv ryb. Problemy ekolohichnoi ta medychnoi henetyky i klinichnoi imunolohii, 3(123), 19-35.
  26. Hedrick, R. P., Gilad, O., & Yun, S., et al. (2000). A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp. J Aquat Animal Health, 12, 44-55. https://doi.org/10.1577/1548-8667(2000)012<0044:AHAWMM>2.0.CO;2 
  27. Buchatskyi, L. P., & Matviienko, N. M. (2009). Elektronnomikroskopchne doslidzhennia  reproduktsii herpesvirusu koi. Tvarynnytstvo Ukrainy, 9, 24-26.
  28. Maistrenko, M. I., Buchatskyi, L. P., & Matviienko, N. M. (2013). Shtam herpesvirusu koi IMV V-4 dlia otrymannia vaktsyny proty virusu herpesu koi. Patent of Ukraine.
  29. Ronen, A., Perelberg, A., & Abramowitz, J., et al. (2003). Efficient vaccine against the virus causing a lethal disease in cultured Cyprinus carpio. Vaccine, 21, 4677-4684. https://doi.org/10.1016/S0264-410X(03)00523-1 
  30. Fusianto, С., Hick, P. M., Murwantoko, Herlambang, A., Whittington, R. J., & Becker,  J. A. (2021). Outbreak investigation attributes Infectious spleen and kidney necrosis virus as a necessary cause of a mortality epidemic in farmed grouper (Epinephelus spp.) in Bali, Indonesia. Aquaculture Reports, 20, 1007-1023.
  31. Rud, Yu. P., & Buchatskyi, L. P. (2019). Pershe vyiavlennia virusu infektsiinoho hematopoetychnoho nekrozu (IHNV) v Ukraini. Bioresursy i virusy: tezy konf. Kyiv, 9-11 veresnia 2019 r.
  32. Rud, Yu. P., Buchatskyi, L. P., & Hrytsyniak, I. I. (2019). Shtam virusu infektsiinoho hematopoetychnoho nekrozu (Infectious  hematopoietic  necrosis  virus,  IHNV),  shtam «Ukraina» (shtam IHNV «Ukraina») dlia otrymannia vaktsyny proty infektsiinoho hematopoetychnoho nekrozu u lososevykh.  Patent of Ukraine.
  33. Salonius, K., Simard, N., Harland, R., & Ulmers, J. B. (2007). The road to licensure of a DNA vaccine. Curr Opin Investig Drugs, 8, 635-641.
  34. Buchatskyi, L. P. (1994). Virusnye infektsii morskikh i presnovodnykh zhyvotnykh. Kiev: Noosfera.
  35. Buchatskyi, L. P., Rud, Yu. P., & Matvyenko, N. N. (2020). Virusnye bolezni osetrov i lososei. Kiev: DIA.
  36. Jones, S. R. M., MacKinnon, A. M., & Salonius, K. (1999). Vaccination of fresh-water-reared Atlantic salmon reduces mortality associated with infectious salmon anaemia virus. Bull Eur Assoc Fish Pathol., 19, 98-101.
  37. Falk, K. (2014). Vaccination against infectious salmon anaemia. Fish vaccination. Chichester: John Wiley and Sons Ltd, 313-320. https://doi.org/10.1002/9781118806913.ch26 
  38. Buchatskyi, L. P. (2012). Alfavirusni khvoroby lososevykh ryb. Rybnytske hospodarstvo Ukrainy, 1, 105-110.
  39. McLoughlin, M. F. & Graham, D. A. (2007). Alphavirus infections in salmonids — a review. J Fish Dis., 30, 511-531. https://doi.org/10.1111/j.1365-2761.2007.00848.x 
  40. Bang, J. B., Kristoffersen, A. B., Myr, C., & Brun, E. (2012). Cohort study of effect of vaccination on pancreas disease in Norwegian salmon aquaculture. Dis Aquat Org., 102, 23-31.  
  41. Deperasińska, I., Schulz, P., Andrzej, K., & Siwicki, A. K. (2018). Salmonid alphavirus (SAV). J. Vet. Res., 62, 1-6.
  42. Xu, C., Mutoloki, S., & Evensen, Ø. (2012). Superior protection conferred by inactivated whole virus vaccine over subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon (Salmo salar L.). Vaccine, 30, 3918-3928.
  43. Kim, R., & Faisal, M. (2011). Emergence and resurgence of the viral hemorrhagic septicemia virus (Novirhabdovirus, Rhabdoviridae, Mononegavirales). J Adv Res., 2, 9-21.
  44. Nakonechnaia, M. H., & Nesterenko, V. S. (1989). Kompleksnyi metod borby s vyrusnoi hemorrahycheskoi septytsemyei (VHS) forely. Rybnoe khoziaistvo, 43, 60-62.
  45. Nesterenko, V. S. (1993). Yzuchenye vyrusnoi hemorrahycheskoi septytsemyy raduzhnoi forely v khoziaistvakh Ukrayny (epyzootolohyia, dyahnostyka, mery borby). Doctor’s thesis. Kiev.
  46. Haidei, O. S. (2015). Etiolohiia virusnoi hemorahichnoi septytsemii (VHS) lososevykh ryb ta biolohichna kharakterystyka zbudnyka. Problemy zooinzhenerii ta veterynarnoi medytsyny, 30(2), 145-149.
  47. Rud, Y. P., & Buchatskiy, L. P. (2019). Isolation of Infectious hematopoietic necrosis virus (IHNV) and Viral hemorrhagic septicemia virus (VHSV) in Ukraine. FEBS Conference: Current Advances in Pathogen Research, March 25 — 31, 2019, Yerevan, Armenia: abstract book. Yerevan.
  48. Anderson, D. P. (1992). Immuno­stimulants, adjuvants, and vaccine carriers in fish: application to aquaculture. Annu Rev Fish Dis., 2, 281-307.
  49. Standish, I. F., Millard, E. V., Brenden, T. O., & Faisal, M. (2016). A DNA vaccine encoding the viral hemorrhagic septicemia virus genotype IVb glycoprotein confers protection in muskellunge (Esox masquinongy), rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta), and lake trout (Salvelinus namaycush). Virology Journal, 13, 203-215.
  50. Lorenzen, N., Lorenzen, E., & Einer-Jensen, K., et al. (1998). Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss, Walbaum) following DNA vaccination. Fish Shellfish Immunol., 8, 261-270.
  51. McLauchlan, P. E., Collet, B., & Ingerslev, E., et al. (2013). DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection: early protection correlates with Mx expression. Fish Shellfish Immunol., 15, 39-50.
  52. Harmache, A., LeBerre, M., Droineau, S., et al. (2006). Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol., 80, 3655-3659. https://doi.org/10.1128/JVI.80.7.3655-3659.2006 
  53. Buchatski, L. P., Rud, Yu. P., & Pastyria, A. S. (2022). Birnavirusy. Kyiv: DIA.
  54. Matvienko, N. M., Rud, Yu. P., & Buchatskiy, L. P. (2014). Replication of Infectious Pancreatic Necrosis Virus in different cell lines and in rainbow trout (Oncorhynchus mykiss) fingerlings. Arch. Polish. Fish., 22, 127-133. https://doi.org/10.2478/aopf-2014-0012.
  55. Rud, Yu. P., & Buchatskyi, L. P. (2012). Identyfikatsiia virusu infektsiinoho pankreatychnoho nekrozu metodom polimeraznoi lantsiuhovoi reaktsii. Virusolohiia: mynule, sohodennia, maibutnie: tezy  konf., 67-68.
  56. Rud, Yu. P., Maistrenko, M. Y., & Buchatskyi, L. P. (2013). Amplifikatsiia ta analiz nukleotydnoi poslidovnosti heniv VP2 ta NS IPNV, vydilenoho v Zakhidnii Ukraini. Problemy ekolohichnoi ta medychnoi henetyky i klinichnoi imunolohii, 4(118), 34-40.
  57. Rud, Y. P., Maistrenko, M. I., & Buchatskiy, L. P. (2015). Characterization of an infectious pancreatic necrosis virus from rainbow trout fry (Onchorhynchus mykiss) in West Ukraine. Virol Sin., 30(3), 231-233. https://doi.org/10.1007/s1225 0- 014- 3513- z.
  58. Buchatskyi, L. P., Matviienko, N. M., & Kharkavliuk, N. Ie. (2013). Shtam birnavirusu ryb IMV V-6 (Aquabirnavirus of salmon IMB V-6) dlia otrymannia vaktsyny proty virusu nekrozu pidshlunkovoi  zalozy foreli. Patent of Ukraine.
  59. Munang’andu, H. M., Fredriksen, B. N., & Mutoloki, S. et al. (2012). Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model. Vaccine, 30, 4007-4016. https://doi.org/10.1016/j.vaccine.2012.04.039 
  60. Zhao, L. L., Liu, M., & Ge, J. W. et al. (2012). Expression of infectious pancreatic necrosis virus (IPNV) VP2-VP3 fusion protein in Lactobacillus casei and immunogenicity in rainbow trouts. Vaccine, 30, 1823-1829. https://doi.org/10.1016/j.vaccine.2011.12.132 
  61. Shivappa, R. B., McAllister, P. E., Edwards, G. H., Santi, N., Evensen, O., & Vakharia, V. N. (2005). Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system. Dev Biol (Basel), 121, 165-174.
  62. Allnutt, F. C., Bowers, R. M., Rowe, C. G., Vakharia, V. N., LaPatra, S. E., & Dhar, A. K. (2007). Antigenicity of infectious pancreatic necrosis virus VP2 subviral particles expressed in yeast. Vaccine, 25(26), 4880-4888. doi: 10.1016/j.vaccine.2007.04.068.
  63. Mikalsen, A.B., Torgersen, J., Aleström, P., Hellemann, A.L., Koppang, E.O., Rimstad, E. (2004). Protection of atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. Dis Aquat Organ., 60(1), 11-20. doi: 10.3354/dao060011. 
  64. Cuesta, A., Chaves-Pozo, E., & de Las Heras, A. I. et al. (2010). An active DNA vaccine against infectious pancreatic necrosis virus (IPNV) with a different mode of action than fish Rhabdovirus DNA vaccines. Vaccine, 28, 3291-3300. https://doi.org/10.1016/j.vaccine.2010.02.106 
  65. Xu, L., Zhao, J., & Liu, M. et al. (2017). Bivalent DNA vaccine induces significant immune responses against infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout. Sci Rep., 7, 5700. https://doi.org/10.1038/s41598-017-06143-w  
  66. Li, S., Hu, Y., Li, X., Han, S., Zhang, B., Yan, Z., Xue, R., Gao, Q., Wu, J., Zhao, X., & Liu, J. (2020). Development of a live vector vaccine against infectious pancreatic necrosis virus in rainbow trout. Aquaculture, 524, 735-275. 10.1016/j.aquaculture.2020.735275.
  67. De las Heras, A. I., Rodríguez Saint-Jean, S., & Pérez-Prieto, S. I. (2010). Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. Fish Shellfish Immunol., 28(4), 562-570. doi: 10.1016/j.fsi.2009.12.006. 
  68. Tamer, C., Cavunt, A., Durmaz, Y., Ozan, E., Kadi, H., Kalayci, G., Ozkan, B., Isidan, H., & Albayrak, H. (2021). Inactivated infectious pancreatic necrosis virus (IPNV) vaccine and E.coli-expressed recombinant IPNV-VP2 subunit vaccine afford protection against IPNV challenge in rainbow trout. Fish Shellfish Immunol., 115, 205-211. doi: 10.1016/j.fsi.2021.06.002. 
  69. Ramstad, A., & Midtlyng, P. J. (2008). Strong genetic influence on IPN vaccination-and-challenge trials in Atlantic salmon, Salmo salar L. J Fish Dis., 31(8)., 567-578. doi: 10.1111/j.1365-2761.2008.00929.x.
  70. Julin, K., Mennen, S., & Sommer, A. I. (2013). Study of virulence in field isolates of infectious pancreatic necrosis virus obtained from the northern part of Norway. J Fish Dis., 36(2), 89-102. https://doi.org/10.1111/j.1365- 2761.2012.01423.x.
  71. Rivas-Aravena, A., Martin, M. C. S., & Galaz, J. et al. (2012). Evaluation of the immune response against immature viral particles of infectious pancreatic necrosis virus (IPNV): a new model to develop an attenuated vaccine. Vaccine, 30, 5110-5117. https://doi.org/10.1016/j.vaccine.2012.05.062 
  72. Johansen, L. H., Eggset, G., & Sommer, A. I. (2009). Experimental IPN virus infection of Atlantic salmon parr; recurrence of IPN and effects on secondary bacterial infections in post-smolts. Aquaculture, 290(1-2), 9-14. //doi.org/10.1016/j.aquaculture.2009.02.002.
  73. Benkaroun, J., Muir, K. F., Allshire, R., Tamer, C., & Weidmann, M. (2021). Isolation of a new infectious pancreatic necrosis virus (IPNV) variant from a fish farm in Scotland. Viruses, 13(3), 385. https://doi.org/10.3390/v1303 0385.
  74. FAO (2018). The State of World Fisheries and Aquaculture 2018: Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.
  75. Sommerset, I., Skern, R., Biering, E., Bleie, H., Fiksdal, I. U., Grove, S., & Nerland, A. H. (2005). Protection against Atlantic halibut nodavirus in turbot is induced by recombinant capsid protein vaccination but not following DNA vaccination. Fish Shellfish Immunol., 18(1), 13-29. doi: 10.1016/j.fsi.2004.03.006.
  76. Tian, Y., Ye, X., Zhang, L., Deng, G., & Bai, Y. (2013). Development of a novel candidate subunit vaccine against Grass carp reovirus Guangdong strain (GCRV-GD108). Fish Shellfish Immunol., 35(2), 351-6. doi: 10.1016/j.fsi.2013.04.022.
  77. Min, L., Li-Li, Z., Jun-Wei, G., Xin-Yuan, Q., Yi-Jing, L., Di-Qiu, L. (2012). Immunogenicity of Lactobacillus-expressing VP2 and VP3 of the infectious pancreatic necrosis virus (IPNV) in rainbow trout. Fish Shellfish Immunol., 32(1), 196-203. doi: 10.1016/j.fsi.2011.11.015.
  78. Reyes, M., Ramírez, C., Ñancucheo, I., Villegas, R., Schaffeld, G., Kriman L., Gonzalez, J., & Oyarzun, P. (2017). A novel “in-feed” delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar). Vaccine, 35(4), 626-632. doi: 10.1016/j.vaccine.2016.12.013.
  79. Wolf, A., Hodneland, K., Frost, P., Braaen, S., & Rimstad, E. (2013). A hemagglutinin-esterase-expressing salmonid alphavirus replicon protects Atlantic salmon (Salmo salar) against infectious salmon anemia (ISA). Vaccine, 31(4), 661-669. doi: 10.1016/j.vaccine.2012.11.045.
  80. Caruffo, M., Maturana, C., Kambalapally, S., Larenas, J., & Tobar, J. A. (2016). Protective oral vaccination against infectious salmon anaemia virus in Salmo salar. Fish Shellfish Immunol., 54, 54-59. doi: 10.1016/j.fsi.2016.03.009.
  81. Robertsen, B., Chang, C.J., & Bratland, L. (2016). IFN-adjuvanted DNA vaccine against infectious salmon anemia virus: antibody kinetics and longevity of IFN expression. Fish Shellfish Immunol, 54, 328-332. https:// doi. org/ 10.1016/j.fsi. 2016.04.027.
  82. Olsen, C. M., Pemula, A. K., Braaen, S., Sankaran, K., & Rimstad, E. (2013). Salmonid alphavirus replicon is functional in fish, mammalian and insect cells and in vivo in shrimps (Litopenaeus vannamei). Vaccine, 31(48), 5672-5679. doi: 10.1016/j.vaccine.2013.09.058.
  83. Chang, C. J., Gu, J., & Robertsen, B. (2017). Protective effect and antibody response of DNA vaccine against salmonid alphavirus 3 (SAV3) in Atlantic salmon. J Fish Dis., 40(12), 1775-1781. doi: 10.1111/jfd.12644.
  84. Lund, M., Røsæg, M. V., Krasnov, A., Timmerhaus, G., Nyman, I. B., Aspehaug, V., Rimstad, E., & Dahle, M. K. (2016). Experimental Piscine orthoreovirus infection mediates protection against pancreas disease in Atlantic salmon (Salmo salar). Vet Res., 47(1), 107. doi: 10.1186/s13567-016-0389-y.
  85. Kim, M. S., Jee, B. Y., Cho, M. Y., Kim, J. W., Jeong, H. D., & Kim, K. H. (2012). Fugu double U6 promoter-driven long double-stranded RNA inhibits proliferation of viral hemorrhagic septicemia virus (VHSV) in fish cell lines. Arch Virol., 157(6), 1029-38. doi: 10.1007/s00705-012-1275-1.
  86. Vinay, T. N., Kim, Y. J., Jung, M. H., Kim, W. S., Kim, D. H., & Jung, S. J. (2013). Inactivated vaccine against viral hemorrhagic septicemia (VHS) emulsified with squalene and aluminum hydroxide adjuvant provides long term protection in olive flounder (Paralichthys olivaceus). Vaccine, 31(41), 4603-4610. doi: 10.1016/j.vaccine.2013.07.036.
  87. Vendramin, N., Alencar, A. L. F., Iburg, T. M., Dahle, M. K., Wessel, Ø., Olsen, A. B., Rimstad, E., & Olesen, N. J. (2018). Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) protects against subsequent challenge with infectious hematopoietic necrosis virus (IHNV). Vet Res., 49(1), 30. doi: 10.1186/s13567-018-0524-z.
  88. Pakingking, R. Jr., Bautista, N. B., de Jesus-Ayson, E. G., & Reyes, O. (2010). Protective immunity against viral nervous necrosis (VNN) in brown-marbled grouper (Epinephelus fuscogutattus) following vaccination with inactivated betanodavirus. Fish Shellfish Immunol., 28(4), 525-533. doi: 10.1016/j.fsi.2009.12.004.
  89. Chien, M. H., Wu, S. Y., & Lin, C. H. (2018). Oral immunization with cell-free self-assembly virus-like particles against orange-spotted grouper nervous necrosis virus in grouper larvae, Epinephelus coioides.Vet Immunol Immunopathol., 197, 69-75. doi: 10.1016/j.vetimm.2018.01.012. Epub 2018 Jan 31. PMID: 29475509.
  90. Marsian, J., Hurdiss, D. L., Ranson, N. A., Ritala, A., Paley, R., & Cano, I., et al. (2019). Plant-made nervous necrosis virus-like particles protect fish against disease. Front. Plant Sci., 10, 880. doi: 10.3389/fpls.2019.00880.
  91. Nuñez-Ortiz, N., Pascoli, F., Picchietti, S., Buonocore, F., Bernini, C., Toson, M., Scapigliati, G., & Toffan, A. (2016). A formalin-inactivated immunogen against viral encephalopathy and retinopathy (VER) disease in European sea bass (Dicentrarchus labrax): Immunological and protection effects. Vet. Res., 47, 1-11. https://doi.org/10.1186/s13567-016-0376-3 
  92. Valero, Y., Mokrani, D., Chaves-Pozo, E., Arizcun, M., Oumouna, M., Meseguer, J., Esteban, M. Á., & Cuesta, A. (2018). Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity. Dev. Comp. Immunol., 86, 171-179. https://doi.org/10.1016/j.dci.2018.05.013 
  93. Gonzalez-Silvera, D., Guardiola, F. A., Espinosa, C., Chaves-Pozo, E., Esteban, M.Á., & Cuesta, A. (2019). Recombinant nodavirus vaccine produced in bacteria and administered without purification elicits humoral immunity and protects European sea bass against infection. Fish Shellfish Immunol., 88, 458-463. https://doi.org/10.1016/j.fsi.2019.03.013 
  94. Valero, Y., Awad, E., Buonocore, F., Arizcun, M., Esteban, M. Á., Meseguer, J., Chaves-Pozo, E., Cuesta, A. (2016). An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev Comp Immunol., 65, 64-72. doi: 10.1016/j.dci.2016.06.021.
  95. Wessel, Ø., Haugland, Ø., Rode, M., Fredriksen, B. N., Dahle, M. K., & Rimstad, E. (2018). Inactivated Piscine orthoreovirus vaccine protects against heart and skeletal muscle inflammation in Atlantic salmon. J. Fish Dis., 41, 1411-1419. https://doi.org/10.1111/jfd.12835 
  96. Haatveit, H. M., Hodneland, K., Braaen, S., Hansen, E. F., Nyman, I. B., Dahle, M. K., Frost, P., & Rimstad, E. (2018). DNA vaccine expressing the non-structural proteins of Piscine orthoreovirus delay the kinetics of PRV infection and induces moderate protection against heart -and skeletal muscle inflammation in Atlantic salmon (Salmo salar). Vaccine, 36, 7599-7608. https://doi.org/10.1016/j.vaccine.2018.10.094 
  97. Su, H., van Eerde, A., Steen, H. S., Heldal, I., Haugslien, S., & Ørpetveit, I., et al. (2021). Establishment of a piscine myocarditis virus (PMCV) challenge model and testing of a plant-produced subunit vaccine candidate against cardiomyopathy syndrome (CMS) in Atlantic salmon Salmo salar. Aquaculture, 541, 736-806. doi: 10.1016/j.aquaculture.2021.736806.
  98. Zhao, Z., Zhang, C., Jia, Y. J., Qiu, D. K., Lin, Q., Li, N. Q., Huang, Z. B., Fu, X. Z., Wang, G. X., Zhu, B. (2019). Immersion vaccination of Mandarin fish Siniperca chuatsi against infectious spleen and kidney necrosis virus with a SWCNTs-based subunit vaccine. Fish Shellfish Immunol., 92, 133-140. doi: 10.1016/j.fsi.2019.06.001.
  99. Aonullah, A. A., Nuryati, S., & Alimuddin, M. S. (2017). Efficacy of koi herpesvirus DNA vaccine administration by immersion method on Cyprinus carpio field scale culture. Aquac Res, 48(6), 2655-2662. https://doi.org/10. 1111/are.13097.
  100. Rud, Yu., Bigarre, L., & Buchatsky, L. P. (2019). First detection of a sturgeon mimivirus in Ukraine. 19th International Conference on Diseases of Fish and Shellfish, Porto, Portugal, September 09-13, 2019: abstract book. Porto, Portugal.
  101. Rud, Yu., Maistrenko, M., Zaloilo, O., Liubchenko, G., Buchatskiy, L., & Hrytsyniak, I. (2020). Experimental infection of brown trout (Salmo trutta), zebrafish (Danio rerio), and swan mussel (Anodonta cygnea) with infectious pancreatic necrosis virus (IPNV). Agricultural Science and Practice, 7(3), 31-39. doi: https://doi.org/10.15407/agrisp7.03.031.