Ribogospod. nauka Ukr., 2022; 3(61): 53-70
DOI: https://doi.org/10.15407/fsu2022.03.053
УДК 639.3:615

Use of prebiotic «Actigen» in fish feeding (a review)

O. Dobryanska, This email address is being protected from spambots. You need JavaScript enabled to view it. , Lviv Research Station of the Institute of Fisheries NAAS, Velykyj Lubin
O. Deren, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the NAAS, Kyiv
M. Simon, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the NAAS, Kyiv
R. Kolesnik, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the NAAS, Kyiv

Purpose. Analyzethe array of special specialized literature and to summarize the information obtained regarding the use of the drug «Actigen» in the sub-branches of animal husbandry, to highlight its main characteristics and mechanism of biological action, to substantiate the prospects of its use in fish farming.

Findings. An analysis of modern scientific publications is presented, which reflect the peculiarities of the drug «Actigen», as well as its pharmacokinetics and pharmacodynamics. Its advantages among prebiotic preparations, the effectiveness of its use in animal husbandry and aquaculture, as well as the degree of scientific and research coverage of this issue are outlined. Literary data on the main directions of this drug action to the fish organism are summarized. Thus, the effect of «Actigen» on the intestinal microbiome and non-specific immunity of fish is highlighted. The possibility of replacing it with the use of antibiotics and therapeutic and preventive drugs in fish farming was considered. The prospect of nourishing this drug as an additive to the main feed was analyzed in order to reduce the feed conversion ratio and improve fish-biological indicators. The expediency of using the drug «Actigen» in fish feeding is shown.

Practical Value. The review can be useful for scientists, researchers, students, civil servants and private entrepreneurs who are involved in the production processes of feed additives for fish and fishery products.

Keywords: «Actigen», prebiotics, fish feed, microbiome, opportunistic microorganisms, antibiotics, mananooligosaccharides.


  1. Ringø, E., Olsen, R. E., Gifstad, T. Ø., Dalmo, R. A., Amlund, H., Hemre, G.-I., & Bakke A. M. (2010). Prebiotics in aquaculture: a review. Aquaculture Nutrition, 16, 117-136. https://doi.org/10.1111/j.1365-2095.2009.00731.x 
  2. Fadeenko, G. D., Kurinnaja, E. G., & Vovchenko M. N. (2015). Nutrigenomika i nutrigenetika: vozmozhnosti prakticheskogo primenenija. Suchasna gastroenterologіja, 6(86), 7-12.
  3. Hung, L. T. (2012). Building new aquafeeds: Feeding for health and performance in Tracatfish (Pangasiaodon hypophtalamus). Science and Technology in the Feed Industry: Alltech’s 28th Annual International symposium, May 20-23. Lexington, Kentucky, USA.
  4. Torrecillas, S., Montero, D., & Izquierdo, M. (2014). Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action. Fish & Shellfish Immunology, 36(2), 525-544. https://doi.org/10.1016/j.fsi.2013.12.029  
  5. Zhao, H., Li, C., Beck,  B. H., Zhang, R., Thongda,  W., Davis,  D. A., & Peatman, E. (2015). Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus. Fish Shellfish Immunology, 46(2), 624-637. doi: 10.1016/j.fsi.2015.07.005.
  6. Lu, Z., Feng, L., Jiang, Wei-Dan, Wu, P., Liu, Y., Jiang, J., Kuang,  Sheng-Yao, Tang,  L., Li,  Shu-Wei, Liu,  Xiang-An, Zhong,  Cheng-Bo, & Zhou  Xiao-Qiu (2021). Mannan Oligosaccharides Application: Multipath Restriction From Aeromonas hydrophila Infection in the Skin Barrier of Grass Carp (Ctenopharyngodon idella). Front Immunology, 18(12), 1-14. doi: 10.3389/fimmu.2021.742107.
  7. Simon, M. Yu., Hrytsyniak, I. I., & Zabytivskyi, Yu. M. (2018). Vykorystannia sukhykh instantnykh pekarskykh drizhdzhiv u hodivli molodi rosiiskoho osetra (Acipenser gueldenstaedtii).  Tavriiskyi naukovyi visnyk, 104, 220-224. 
  8. Simon, M., Zabytivskyi, Yu., Hrytsyniak, I., & Dragan, L. (2019). Morphological parameters of the digestive system of Russian sturgeon (Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833) fry under exposure to dry baker’s yeasts as an additive to the basic feed. Rybohospodarska nauka Ukrainy, 2(48), 67-78.
  9. Lesage, G., & Bussey, H. (2006). Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 317-343. https://doi.org/10.1128/MMBR.00038-05 
  10. Torrecillas, S. A., Makol, M. J. Caballero, D., Montero, Ginés, R. Sweetman, J., & Izquierdo, M. (2011). Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquaculture Nutrition, 17, 223-233. https://doi.org/10.1111/j.1365-2095.2009.00730.x 
  11. Vashchenko, A. V., & Matviienko, N. M. (2015). Vplyv zghodovuvannia kormovykh dobavok NUPRO® i BIO‐MOS® na rezultaty vyroshchuvannia dvolitok koropa (Cyprinus carpio carpio). Rybohospodarska nauka Ukrainy, 3, 91-98. https://doi.org/10.15407/fsu2015.03.091 
  12. Vashchenko, A. V. (2015).  Rezultaty vyroshchuvannia riznovikovykh hrup kanalnoho soma (Ictalurus punctatus Rafinesque) z vykorystanniam probiotychnykh kormovykh dobavok Nupro® ta Biomos®. Rybohospodarska nauka Ukrainy, 4, 78-89. https://doi.org/10.15407/fsu2015.04.078 
  13. Simon, M. Yu., Hrytsyniak, I. I., & Kolesnyk N. L. (2020). Rybnytsko-biolohichni pokaznyky vyroshchuvannia rannoi molodi rosiiskoho osetra za umovy vvedennia v yoho ratsion inaktyvovanykh pekarskykh drizhdzhiv. Vodni bioresursy ta akvakultura, 1, 73-87. https://doi.org/10.32851/wba.2020.1.7 
  14. Ahmad, M. H., El-Mousallamy, A., Awad, S. M. M., & Abd El-Nab, A. S. (2013). Evaluation of Bio-Mos® as a feed additive on growth performance, physiological and immune responses of Nile tilapia, Oreochromis niloticus (L.). Journal of applied sciences research, 9(10), 6441-6449.
  15. Navarrete, P., & Tovar-Ramírez, D. (2014). Use of yeasts as probiotics in fish aquaculture. Sustainable Aquaculture Techniques, 8, 135-172. https://doi.org/10.5772/57196 
  16. Dobrianska, O. P., Zabytivskyi, Y. M., & Deren, O. V. (2021). Digestibility of productive carp feeds under the effect of mannan oligosaccharide. AACL Bioflux, 14(4), 2021-2026.
  17. Song, S. K., Beck,  B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø,  E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunology, 40(1), 40-48. doi: 10.1016/j.fsi.2014.06.016.
  18. Yu, H. H., Han, F., Xue, M., Wang, J., Tacon, P., Zheng, Y. H., Wu, X. F., & Zhang, Y. J. (2014). Efficacy and tolerace of yeast cell wall as an immunostimulant in the diet of Japanese seabass (Lateolabrax japonicas). Aquaculture, 432, 217-224. https://doi.org/10.1016/j.aquaculture.2014.04.043 
  19. Stefanetti, S. (2016). Investigating the effects of a dietary inclusion of Actigen and Aquagard on the health and overall performance of yellowtail kingfish. [S. l.]: Murdoch University.
  20. Staykov, Y., Spring, P., Denev, S., & Sweetman, J. (2007). Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 15, 153-161. https://doi.org/10.1007/s10499-007-9096-z 
  21. Gelibolu S., Yanar, Y., Genc, M. A., & Genc, E.  (2018). The Effect of Mannan-Oligosaccharide (MOS) as a Feed Supplement on Growth and Some Blood Parameters of Gilthead Sea Bream (Sparus Aurata). Turkish Journal Fisheries Aquatic Sciences, 18, 817-823. doi: 10.4194/1303-2712-v18_6_08.
  22. Tacon, A. G. J. (2019). Trends in Global Aquaculture and Aquafeed Production: 2000-2017. Review Fisheries Science Aquaculture, 28, 43-56. doi: 10.1080/23308249.2019.1649634.
  23. Lu, Z. H., Jiang, Wei-Dan, Wu, P., Liu,  Y., Kuang,  S.-Y., Tang, L., Yang, J., Zhou, Xiao-Qiu, & Feng, L. (2020). Mannan Oligosaccharides Supplementation Enhanced Head-Kidney and Spleen Immune Function in on-Growing Grass Carp (Ctenopharyngodon Idella). Fish Shellfish Immunology, 106, 596-608. doi: 10.1016/j.fsi.2020.08.035.
  24. Dobrianska, O. P., Deren, O. V., & Hryhorenko T. V. (2019). Produktyvni pokaznyky dvolitok koropa pry zastosuvanni v hodivli prebiotyka v umovakh vyroshchuvalnykh staviv. Rybohospodarska nauka Ukrainy, 4 (50), 95-108. https://doi.org/10.15407/fsu2019.04.095 
  25. Sverinciuc, C., Benţea, M. I., & Sara, A. (2017). The effects of some fodder additives on growth performance of Siberian sturgeon (Acipenser baeri). Agriculture Science and Practice, 1-2(101-102), 105-109.
  26. Torrecillas, S., Montero, D., Caballero, M. J., Robaina, L., Zamorano, M. J., Sweetman, J., & Izquierdo, M. (2015). Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish & Shellfish Immunology, 42, 508-516. https://doi.org/10.1016/j.fsi.2014.11.033 
  27. Mohsen, Abdel-Tawwab. (2012). Interactive effects of dietary protein and live bakery yeast, Saccharomyces cerevisiae on growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection. Aquaculture International, 20, 317-331. https://doi.org/10.1007/s10499-011-9462-8 
  28. Merrifield, D., & Ringo, E. (2014). Aquaculture nutrition. Gut health, probiotics and prebiotics. Chichester: Wiley-Blackwell Publishing. https://doi.org/10.1002/9781118897263 
  29. Magnadóttir, B. (2006). Innate Immunity of Fish (Overview). Fish Shellfish Immunology, 20, 137-151. doi: 10.1016/j.fsi.2004.09.006.
  30. Akhter, N., Wu, B., Memon, A. M., & Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunology, 45(2), 733-741. doi: 10.1016/j.fsi.2015.05.038.
  31. Pryor, G. S., Royes, J. B., Chapman, F. A., & Miles, R. D. (2003). Mannanoligosaccharides  in  fish nutrition:  effects  of  dietary supplementation  on  growth  and gastrointestinal villi  structure in  Gulf of  Mexico  sturgeon. North  American Journal of Aquaculture, 65, 106-111. https://doi.org/10.1577/1548-8454(2003)65<106:MIFNEO>2.0.CO;2 
  32. Salze, G., Mclean, E., Shwarz, M. H., & Craig, S. R. (2003). Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture, 274, 148-152. https://doi.org/10.1016/j.aquaculture.2007.11.008 
  33. Dawood, M. A. O., & Koshio, S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture, 454, 243-251. https://doi.org/10.1016/j.aquaculture.2015.12.033 
  34. Ganguly, S., Paul, I., & Mukhopadhayay, S. K. (2010). Application and effectiveness of immunostimulants, probiotics, and prebiotics in aquaculture: a review. The Israeli Journal of Aquaculture – Bamidge, 62(3), 130-138. https://doi.org/10.46989/001c.38880 
  35. Ognean, L., & Barbu, A. (2009). The estimation of the biostimulator potential of some fodder additives based on the main hematological and biometrical indices of brook trout (Salvelinus fontinalis M.). Annals of RSCB, XIV(2), 292-296.
  36. Merrifield, D. L., Dimitroglou, A., Foey, A., & Davies, S. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302, 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007 
  37. Grisdle-Helland, B., Helland, S.  J., & Gatlin, D. M.  (2008). The effect of dietary  supplement  with  mannan-oligosaccharide,  fructo-oligosaccharide  or  galacto-oligosaccharide  on  the  growth  and feed  utilization  of  Atlantic  salmon (Salmo salar). Aquaculture, 283, 163-167. https://doi.org/10.1016/j.aquaculture.2008.07.012 
  38. Gaggia, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141, 15-28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031 
  39. Carbone, D., & Faggio, C. (2016). Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunology, 54, 172-178. doi: 10.1016/j.fsi.2016.04.011.
  40. Dobrianska, O. P. (2020). Aktyvnist systemy antyoksydantnoho zakhystu v orhanizmi koropa za vykorystannia u skladi kormu prebiotyka. Vodni bioresursy ta akvakultura, 2(8), 112-124. https://doi.org/10.32851/wba.2020.2.11 
  41. Dobrianska, O. P., Zhyla, M. I., Vishchur, O. I., Deren, O. V. & Koryliak,  M. Z. (2021). Intestinal histostructure and immune protection activity of age -1 + carp after consumption of prebiotic feed additive. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(2), 31-37. doi: 10.32718/ujvas4-2.06
  42. Nawaz, A., Javaid, A. B., Irshad, S., Hoseinifar, S. H., & Xiong, H. (2018). Functionality of Prebiotics as Immunostimulant: Evidences From Trials on Terrestrial and Aquatic Animals. Fish Shellfish Immunology, 76, 272-278. doi: 10.1016/j.fsi.2018.03.004.
  43. Mumford, S., Heidel, J., Smith, C., Morrison, J., Macconnell, B., & Blazer, V. (2007). Fish Histology and Histopathology. Shepherdstown, West Virginia: U.S. Fish and Wildlife Service — National Conservation Training Center.
  44. Bondad-Reantaso, M. G., Subasinghe, R. P., & Arthur, J. R. (2005). Disease and health management in Asian aquaculture. Veterinary Parasitology, 132(3-4), 249-272. https://doi.org/10.1016/j.vetpar.2005.07.005 
  45. Gisbert, E., Nolasco, H., & Solovjev, M. (2018). Towards the standartization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487, 102-108. https://doi.org/10.1016/j.aquaculture.2018.01.004 
  46. Butt, R. L., & Volkoff, H. (2019). Gut Microbiota and Energy Homeostasis in Fish. Frontiers in Endocrinology, 33, 11-19. https://doi.org/10.3389/fendo.2019.00009 
  47. Anguiano, M., Pohlenz, C., Buentello, A., & Gatlin, D. M. (2013). The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops × M. saxatilis). British Journal of Nutrition, 109, 623-629. https://doi.org/10.1017/S0007114512001754 
  48. Maslianko, R. P. (1999). Osnovy imunobiolohii. Lviv: Vertykal.
  49.  Fish to 2030: Prospects for Fisheries and Aquaculture. (2013). Washington, DC: World Bank.