pdf35

Ribogospod. nauka Ukr., 2021; 1(55): 5-21
DOI: https://doi.org/10.15407/fsu2021.01.005
УДК 639.3.043.13:636.087.7

Technological aspects of intensive technologies using in the commercial cultivation of common carp (Cyprinus  carpio (Linnaeus, 1758))

O. Honcharova, This email address is being protected from spambots. You need JavaScript enabled to view it. , Kherson State Agrarian-Economic University, Kherson, Ukraine
P. Kutishchev, This email address is being protected from spambots. You need JavaScript enabled to view it. , Kherson State Agrarian-Economic University, Kherson, Ukraine
Ye. Кorzhov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Kherson State Agrarian-Economic University, Kherson, Ukraine
Yu. Kovalov,  This email address is being protected from spambots. You need JavaScript enabled to view it. , State institution «Kherson industrial and  Experimental Plant for rearing juvenile of mainstream fish species», Kherson

Purpose. To study the effect of the feed factor on the functional state of the carp body (Cyprinus carpio L.) under the conditions of growing in a model recirculation system of complex purpose with the use of  intensive technologies.

Methodology. The experimental part of the study was performed at the laboratory of the Scientific and Research Lab “Aquaculture Perspectives”, Scientific and Research Laboratory of “Physiological and Biochemical Studies named after S. Pentelyuk”, Scientific and Research Laboratory of Ecological and Chemical Analysis and Water Monitoring of the State Education Institution “Kherson State Agrarian and Economical University” and at the laboratory of the “Kherson Production and Experimental Hatchery of Ordinary Fish Breeding”. Carp growing was carried out in the model installation of tanks recirculation type with using intensive technologies, alternative energy sources, method of gas-discharge visualization. During the experiment following was performed: clinical examination of fish, control of growth rate and weight gain, survival rate, physiological state and morpho-functional parameters of blood in accordance with conventional methods.

Findings. The general functional state of the organism of the common carp Cyprinus carpio L. in ontogenesis was investigated against the background of activation of adaptive-compensatory mechanisms, metabolic processes under the influence of the food factor under rearing conditions in a model system for complex purposes in aquaculture. Positive results of analysis of morpho-functional, biochemical parameters of carp blood were obtained when feeding with a feed mixture from natural fodder and biologically active substances. The degree of influence of the fodder factor as a corrector of metabolic processes in the carp organism when growing the marketable mass has been studied.

Originality. The conducted analysis of gas-discharge visualization of static GDV-gram parameters of optoelectronic emission of young-of-the-year carp showed differences in functional activity in the organism of fish from the experimental group in relation to the control group, which was also substantiated and argumentative by the parameters of carp blood and development rate.

Practical value. The proposed method of feeding carp in the recirculation system contributes to the correction of metabolic processes in their body, which makes it possible to reduce the cost through the use of natural feed, the cultivation of which is introduced into the recirculation system, the formation of a mixture of our own production, using the GDV-method diagnostics of objects and energy-saving elements in technological map.

Key words: carp, vitality, feeding factor, fish stocking, modular system, intensive technology.

REFERENCE

  1. Adams, C., А. (1999). Nutricines Food: Components in Health and Nutrition. Nottingham UK:Nottingham University Press. 
  2. Alyokin, O., A. (1970). Osnovy hydrokhymyy. Lenynhrad: Hydrometeoyzdat.
  3. Boehmer, S., Gold, M., Hauser, S., Thomas, B., & Yourg, A. (2005). Organic Agriculture. NAL, U. S. DA: Alternative Farming Systems Information Center.
  4. Camacho-Rodriguez, J. (2018). Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: nutrient stability under different storage conditions. J. Applied Phycol. https://doi.org/10.1007/s10811-017-1281-5.
  5. Fegan, D., F. (2006). Functional foods for aquaculture: benefits of NuPro® and dietary nucleotides in aquaculture feeds. Nutritional biotechnology in the feed and food industries: Alltech's 22nd Annual Symposium, Lexington, Kentucky, USA, 23-26: proceedings. Lexington, Kentucky, 419-432.
  6. Vainshelboim, A., L., Hayes, M.,T., Korotkov, K., G., & Momoh, K., S. (2005). GDV Technology Applications for Cosmetic Sciences. IEEE 18th Symposium on Computer-Based Medical Systems: proceed. Dublin.
  7. Honcharova, O. V. (2019). Physiological and biochemical justification of the method of the treatment of cyanobacteria Spirulina (Arthrospira) platensis when feeding young of the year carp. Modern Technologies of Propagation and Restocking of Native Fish Species: International Scientific and Practical Conference: book of abstracts. Mukachevo, Ukraine, 24-26.
  8. Honcharova, O. V., Paraniak R. P., & Hutyi, B. V. (2019). Funktsionalnyi stan orhanizmu prisnovodnykh ryb za umov vplyvu abiotychnykh chynnykiv. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho. Seriia: Silskohospodarski nauky, 21(90), 82-87. https://doi.org/10.32718/nvlvet-a9014.
  9. Honcharova O. V., Paranjak, R. P., Rudenkо, О. P., & Lytvyn N. А. (2020). Biological substantiation of improvement of biotechnological map of production of aquaculture products "eco - direction". Ukrainian Journal of Ecology, 10(1), 261-266.   https://doi.org/10.15421/2020_41.
  10. Honcharova, O. V., & Tushnytska, N. I. (2018). Fiziolohichne obgruntuvannia vykorystannia netradytsiinoho metodu obrobky syrovyny v akvakulturi. Rybohospodarska nauka Ukrainy, 1, 54-64. https://doi.org/10.15407/fsu2018.01.054.
  11. Hrynzhevskyi, M. V., & Pekarskyi, A. V. (2004). Optymizatsiia vyrobnytstva produktsii akvakultury. PolihrafKonsaltynh.
  12. Hrytsyniak, I. I., Chuklin, A. V., & Buzevych, I. Yu. (2013). Ikhtiolohichni aspekty vyznachennia istotnosti shkody rybnomu hospodarstvu.  Rybohospodarska nauka Ukrainy, 3, 7-14. URL : http://nbuv.gov.ua/UJRN/rnu_2013_3_3. https://doi.org/10.15407/fsu2013.03.007  
  13. Hrytsyniak, I. I. (2007). Naukovo-praktychni osnovy ratsionalnoi hodivli ryb. Kyiv.
  14. Dehtiarov, P. A., Sherman, I. M., Pylypenko, Yu. V., Yarzhombek, O. O., & Vovchenko, S. H.  (2001). Fiziolohiia ryb. Praktykum.  Kyiv: Vyshcha shkola, 24-44.
  15. Kolty`pin, Yu. A. (1975). Opy`t ispol`zovaniya muki iz lichinok komnatnoj mukhi dlya kormleniya molodi karpa. Byulleten` nauchny`kh rabot, 4, 60-63.
  16. Pishchenko, E. V. (2002). Gematologiya presnovodnoy ryby: uchebnoe posobie. Novosibirsk: Novosib. gos. agrar. un-t.
  17. Korotkov,  K., Matravers, P., & Orlov, D. (2010). Application of electrophoton capture (EPC) analysis based on gas discharge visualization (GDV) technique in medicine: a systematic review. Journal of alternative and complementary medicine, 6(1), 13-25. https://doi.org/10.1089/acm.2008.0285 
  18. Korzhov, Ye., I., Kutishchev, P., S., & Honcharova O., V. (2020). Influence of water balance elements change on the salinity regime of the Dnieper-Bug estuary. Innovative development of science and education: III International Scientific and Practical Conference, Athens, Greece: abstracts. Athens, 225-231.
  19. Krazhan, S. A., Antypchuk, A. F., & Lytvynova, T. H., (1979). Opyt kultyvyrovanyia Daphnia magna Straus na kombykorme y hydrolyznykh drozhzhakh. Rybnoe khoziaistvo, 29, 58-61.
  20. Matassa, S., Boon, N., Pikaar, I., & Verstraete, W. (2016). Microbial protein: future sustainable food supply route with low environmental footprint. Microbial biotechnology, 9(5), 568-575. https://doi.org/10.1111/1751-7915.12369 
  21. Merzlova, H., V. (2014). Vmist khlorofilu u biomasi spiruliny za dii riznykh doz mikroelementiv u pozhyvnomu seredovyshchi. Biolohiia tvaryn, 16 (2), 71-76. https://doi.org/10.12737/3896 
  22. Sherman, I. M., et al. (2002). Naukove obhruntuvannia ratsionalnoi hodivli ryb. Kyiv: Vyshcha osvita.
  23. Palamarchuk, R., A., & Deren, O., V. (2018). Vplyv amarantu Amaranthus (Linnaeus) na yakisni ta produktyvni kharakterystyky dvolitok koropa (Cyprinus carpio (Linnaeus)) za vvedennia yoho do skladu ratsionu. Rybohospodarska nauka Ukrainy, 3, 89-102. https://doi.org/10.15407/fsu2018.03.089 
  24. Deren, O. V., Pirus, R. I., & Hrytsyniak, I. I. (2011). Sposib biostymuliatsii produktyvnosti koropa. Patent of Ukraine. No. 64556.
  25. Pivovarov, O., Mykolenko, S., & Honcharova, O. (2018). Development of natural sciences in countries of the European Union taking into account the challenges of XXI. Comprehensive food safety and quality assessment of plasma-chemically activated water usage. Lublin, Poland: Baltija Publishing.
  26. Sherman, I. M., Heina, K. M., Kutishchev, S. V., & Kutishchev, P. S. (2013). Ekolohichni transformatsii richkovykh hidroekosystem ta aktualni problemy rybnoho hospodarstva.  Rybohospodarska nauka Ukrainy,  4 (26), 5-16. https://doi.org/10.15407/fsu2013.04.005 
  27. Kobets, A. S., Honcharova, O. V., & Puhach, A. M. (2016). Sposib vyznachennia zhyvykh zarodkiv v period inkubatsii yaiets. Patent of Ukraine. No. 111577.
  28. Standart mizhnarodnykh akredytovanykh orhaniv sertyfikatsii z orhanichnoho vyrobnytstva ta pererobky, ekvivalentnyi standartu Yevropeiskoho Soiuzu (2017). Versiia 17.
  29. Wan, A. H. (2019). Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture, 11 (3), 458-492. https://doi: 10.1111/raq.12241.
  30. Zheltov, Yu., A. (2008). Ratsyonalnoe kormlenye karpovykh ryb v akvakulture. Kiev.
  31. Zheltov, Yu., O. (2003). Metodychni vkazivky z provedennia doslidiv po hodivli ryb.  Rybne hospodarstvo, 62, 23-28.
  32. Zolotarova, O. K., & Shniukova, Ye. I. (2008). Perspektyvy vykorystannia mikrovodorostei u biotekhnolohii. Kyiv: Alterpres.
  33. Кorzhov, Ye., & Honcharova, O. (2020). Actual problems of natural sciences: modern scientific discussions: collective monograph. Riga: Baltija Publishing.
  34. Korzhov, Ye. I. (2019). Ecohydrological investigation of plain river section in the area of small hydroelectric power station influence. Current state, challenges and prospects for research in natural sciences: collective monograph, 135-154. https://doi.org/10.36059/978-966-397-156-8/135-154 
  35. Timchenko, V. M., Korzhov, Y. I., Guliayeva, O. A., & Batog, S. V. (2015). Dynamics of Environmentally Significant Elements of Hydrological Regime of the Lower Dnieper Section. Hydrobiological Journal, 51, 6, 75-83. https://doi.org/10.1615/HydrobJ.v51.i6.90