pdf35

Ribogospod. nauka Ukr., 2020; 3(53): 80-91
DOI: https://doi.org/10.15407/fsu2020.03.080
УДК: 597.2/5:504.05(285.3)

Application of marker parameters of roach (Rutilus rutilus Linnaeus, 1758) for diagnosis of ecological condition of water bodies in conditions of excessive anthropogenic pollution

Yu. Kovalenko, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Hydrobiology NANU, Kyiv
A. Potrokhov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Hydrobiology NANU, Kyiv
M. Prychepa, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Hydrobiology NANU, Kyiv
L. Gorbatyuk, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Hydrobiology NANU, Kyiv

Purpose. To investigate changes in the biochemical parameters of roach as a species response to the effects of anthropogenic pollution, which is necessary for further biomarking of the aquatic environment.

Methodology. Fish were caught using hook and line fishing gears. Following biochemical parameters of roach were determined: glycogen and lipid contents, activities of lactate dehydrognase, succinate dehydrogenase, ATPase and alkaline phosphatase.

Findings. Changes in some biochemical parameters of roach under the effect of anthropogenic pollution have been found. A lower content of glycogen and lipids (by 68.65 and 16.12%) was detected in fish from a polluted water body (Lake Kyrylivske) compared to fish from the conditional control (Lake Babyne). The active use of reserved lipids and glycogen emphasizes the general deterioration of ecological conditions in the Lake Kyrylivske.

A higher LDH activity in liver and gill tissues (by 25 and 48%) relative to control was found. In contrast, a lower LDH activity (by 11 and 16%) in all studied tissues (muscles, liver and gills) of roach from the polluted water body was detected. Under conditions of pollution of the water body with toxicants of various chemical nature, aerobic redox processes in roach body are intensified as a result of counteracting a potentially aggressive environment. This is confirmed by a higher LDH activity in liver and gill tissues. According to the results of study, a higher alkaline phosphatase activity was also detected in fish from the Lake Kyrylivske (by 39.9 and 24.6%) compared to the control. This indicates an increase in phosphorylation in these tissues, the process of which is aimed at neutralization and excretion of toxic compounds from the body after their detoxification.

The differences between the studied groups of fish in biochemical parameters prove that they live in significantly different ecological and toxicological conditions.

Originality. For the first time, the results of changes in biochemical markers of roach enzyme activity from some water body of Kyiv, which differ in the level of anthropogenic pollution, are presented.

Practical value. The obtained results of the physiological state of roach can be used as a criterion for assessing the ecological status of individual waterbodies, in particular those that are located in urban areas.

Key words: roach, anthropogenic pollution, enzyme activity, ecological condition.

REFERENCE

  1. Panasiuk, I. V., Tomiltseva, A. I., Zub L. M., & Pohorielova, Yu. V. (2015). Yakist vody u miskykh vodoimakh ta kharakter osvoiennia vodookhoronnykh zon (na prykladi ozer systemy «Opechen», m. Kyiv). Ekolohichna bezpeka ta pryrodokorystuvannia, 4 (20), 63-69.
  2. Romanenko, O. V., Arsan, O. M., Kipnis, L. S., & Sytnyk, Yu. M. (2015). Ekolohichni problemy Kyivskykh vodoim i prylehlykh terytorii. Kyiv: Naukova dumka.
  3. Zub, L. M., Panasiuk, I. V., Tomiltseva, A. I., Barshchevska, N. M., Prokopuk, M. S., Pohorielova Yu. V., Samchyshyna L. P., Skidan O. V., Skidan V. V., & Mykhailyk O. V. (2016). Uporiadkuvannia vodookhoronnykh zon miskykh vodoim na osnovi ekolohichnoi otsinky yakosti vod. Kyiv: Medinform.
  4. Zhezheria, V. A., Lynnyk, P. M., & Zubenko, I. B. (2016). Umist ta formy znakhodzhennia metaliv u ozerakh systemy Opechen (m. Kyiv). Naukovi pratsi UkrNDHMI, 269, 70-86.
  5. Izrajel', Ju. A. (2009). Problemy antropogennoj jekologii. Nauchnye aspekty jekologicheskih problem Rossii. Vol. 1. Moskva: Nauka.
  6. Krot, Yu. H., & Medovnyk, D. V. (2018). Osoblyvosti fiziolohichnoi adaptatsii ryb malykh richok urbanizovanykh terytorii. Hidrobiolohichnyi zhurnal, 54 (5), 53-62.
  7. Kovalenko, Yu. O. (2019). Zmina vmistu malonovoho dialdehidu ta aktyvnosti luzhnoi fosfatazy u tkanynakh karasia sribliastoho (Carassius auratus (Bloch, 1782)) za dii toksychnoho zabrudnennia vodoimy. Konferentsiia molodykh doslidnykiv-zoolohiv. 13-14 lystopada 2019, Zoolohichnyi kurier №13: Tezy dopovidei. Kyiv: Instytutt zoolohii NAN Ukrainy, 13.
  8. Arsan, O. M., Davydov, O. Ia. & Diachenko, T. M.,  et al. (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv, Lohos, 408.
  9. Severin, S. E., & Solov'eva, G. A. (1989). Praktikum po biohimii. Moskva: MGU.
  10. Metody biohimicheskih issledovanij (lipidnyj i jenergeticheskij obmen) (1982). Leningrad: Leningradskyi universitet.
  11. Fiske, C. H., & Subbarow, Y. J. (1925). The colorimetric estimation of phosphorous. Biol. Chem., 66, 375.
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193 (1), 265-275.
  13. Lakin, G. F. (1951). Biometrija. Moskva: Nauka.
  14. Honcharova, M. T., Kipnis, L. S., Konovets, I. M., Nezberytska, I. M., & Yarovyi, M. M. (2019). Otsinka yakosti vody ta donnykh vidkladiv kaskadu ozer Opechen (m. Kyiv) na osnovi toksykolohichnykh ta hidrokhimichnykh doslidzhen. VIII Zizd hidroekolohichnoho tovarystva Ukrainy, prysviachenyi 110-richchiu zasnuvannia Dniprovskoi biolohichnoi stantsii. Perspektyvy hidroekolohichnykh doslidzhen v konteksti problem dovkillia ta sotsialnykh vyklykiv, 6-8 lystopada 2019 r.: mater. Kyiv, 249-252.
  15. Arsan, V. O. (2004). Enerhozabezpechennia orhanizmu koropa pry adaptatsii do zmin kontsentratsii ioniv vazhkykh metaliv u vodnomu seredovyshchi. Extended abstract of candidate’s thesis. Kyiv. 20.
  16. Popova, E. M., & Koshchii, I. V. (2013). Lipidy yak komponent adaptatsii ryb do ekolohichnoho stresu. Rybohospodarska nauka Ukrainy, 1 (1), 49-56.
  17. Lynnyk, P. M., Zhezheria, V. A., Zhezheria, T. P., Ivanechko, Ya. S., & Ihnatenko, I. I. (2016). Hidrokhimichnyi rezhym ozer systemy Opechen (m. Kyiv). Nauk. pratsi Ukr. nauk.-doslidnoho hidromet. in-tu, 269, 59-69.
  18. Yakushyn, V. M., Potrokhov, A. S., Zynkovskyi, O. H., Romanyshyn, H. M., Kalenychenko, K. P., & Lynchuk, M. Y. (2015). Chyslennost bakteryi y proteolytycheskaia aktyvnost v vode ozera, raspolozhennoho v horodskoi cherte. Hydrobyolohycheskyi zhurnal, 51 (1), 83-92.
  19. Lingwood, D., Harauz, G., & Ballantyne, J. S. (2005). Regulation of fish gill Na+-K+-ATPase by selective sulfatide-enriched raft partitioning during seawater adaptation. Journal of Biological Chemistry, 280 (44), 36545-36550. https://doi.org/10.1074/jbc.M506670200 
  20. Rajamanickam, V., & Muthuswamy, N. (2008). Effect of metals induced toxicity on metabolic biomarkers in common carp (Cyprinus carpio L). Intern. J. Sci. Tech., 2 (1). 192-200.
  21. Varadarajan, R. (2010). Biochemical effects of different phenolic compounds on  Oreochromis mosambicus (Peters). Doctor’s thesis. Cochin, India, 250.
  22. Anderson, T., Forlin, L., Hardig, J., & Larson, A. C. (2002). A physiological disturbances in fish living in coastal water polluted with bleached Kraft pulp mill effluents. J. Fish Aquat Sc.,45, 1525-1536. https://doi.org/10.1139/f88-181 
  23. Nemova, N. N., & Vysockaja, R. V. (2004). Biohimicheskaja indikacija sostojanija ryb. Moskva: Nauka.
  24. Khudiiash, Yu. M., Prychepa, M. V., Potrokhov, O. S., Zinkovskyi, O. H., Horbatiuk, L. O., Kovalenko, Yu. O., & Medovnyk, D. V. (2020). Vplyv ekolohichnykh umov okremykh ozer m. Kyieva na stan ikhtiofauny. Rybohospodarska nauka Ukrainy, 1, 28-43.