Ribogospod. nauka Ukr., 2020; 1(51): 79-94 
DOI: https://doi.org/10.15407/fsu2020.01.079
УДК 597-11:574.24:597.551.2

The effect of ammonium nitrogen and phosphorus of phosphates on the biochemical parameters of juvenile rudd (Scardinius erythrophthalmus Linnaeus, 1758)

K. Kofonov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of hydrobiology NAS of Ukraine, Kyiv
A. Potrokhov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of hydrobiology NAS of Ukraine, Kyiv
O. Zinkovskiy, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of hydrobiology NAS of Ukraine, Kyiv

Purpose. To study the physiological and biochemical state of juvenile rudd (Scardinius erythrophthalmus L.) under the chronic effect of high concentrations of ammonium nitrogen and phosphorus of phosphates.

Methodology.The study was conducted at the Bila Tserkva Experimental Hydrobiological station of the Institute of Hydrobiology of the NAS of Ukraine. Ammonium chloride and potassium monophosphate were applied in 14-day experiments. During the experiments, we did not violate the bioethics principles.

The activities of lactatdehydrogenase and alkaline phosphatase were determined using appropriate test kits. The succinate dehydrogenase activity was determined by a spectrophotometric method. Glutamate dehydrogenase activity was determined by the Khokhlov. The total protein content in the muscles and gills was determined according to the Lowry method, the total lipid content was determined using the “Total lipids” test kit, and the glycogen content was determined by the anthrone method.

Findings.Ammonium ions enhance both aerobic and anaerobic respiration processes as evidenced by SDH and LDH activities. On the contrary, the activity of these enzymes decreases due to the action of phosphorus of phosphates.

According to ALP activity, it was found that the studied compounds weaken de-phosphorylation processes. These processes significantly increase only at a concentration of ammonium ions above 5.0 mg N/dm3. Only ammonia nitrogen changes the activity of glutamate dehydrogenase, which is actively involved in nitrogen metabolism, orthophosphate ion is not involved in these processes.

The glycogen content due to the action of ammonium nitrogen showed a tendency to accumulate at low concentrations, which is obviously associated with the activation of gluconeogenesis processes to ensure the homeostasis of the body under such conditions. The action of phosphorus of phosphates resulted in the use of glycogen to ensure the energy needs of the body. At higher concentrations, a decrease in the processes of its accumulation was observed, probably as a result of its parallel use for adaptation processes.

As a result of the enzymatic regulation of metabolic processes, the contents of lipids and protein in the tissues of juvenile rudd change significantly due to the actions of the studied compounds.

Originality. The obtained data supplement and expand the existing scientific knowledge on the patterns of changes in enzymatic activities of energy and protein metabolisms as well as dephosphorylization processes in the tissues of juvenile fish species under the effect of high concentrations of nutrients, in particular ammonium nitrogen and phosphorus of phosphates.

Practical value. Similar changes in the amount of enzyme activity and the content of energy-intensive substances (proteins, lipids, glycogen) can be used as a biochemical marker indicating the presence of a toxic load in a water body. It can include elevated levels of ammonium nitrogen and phosphorus of phosphates, which is possible as a result of the irrational use of ammonium and phosphorus fertilizers on agricultural areas and runoff from them, effluents from livestock complexes and volley of discharges from the industry.

Key words: juvenile rudd, enzyme activity, energy-intensive compounds, ammonium nitrogen, phosphorus phosphates, toxic effects.


  1. Khilchevskyi, V. K., Kurylo, S. M., Dubniak, S. S., Savytskyi, V. M., & Zabokrytska, M. R. (2009). Hidroekolohichnyi stan baseinu richky Ros: monohrafiia . Kyiv: Nika-Tsentr.
  2. Bulatova, A. A., & Antropova, N. K. (2015). Antropohennoe vozdeistvye na okruzhaiushchuiu sredu y zdorove cheloveka. Novoe slovo v nauke: perspektyvy razvytyia, 4, 236-237.
  3. Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine pollution bulletin, 45 (1-12), 17-23. https://doi.org/10.1016/S0025-326X(02)00227-8
  4. Lotter, A. F., & Anderson, N. J. (2012). Limnological responses to environmental changes at inter-annual to decadal time-scales. Tracking environmental change using lake sediments. Dordrecht: Springer, 557-578. https://doi.org/10.1007/978-94-007-2745-8_18
  5. Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32 (6), 831-849. https://doi.org/10.1016/j.envint.2006.05.002
  6. Francis-Floyd, R., Watson, C., Petty, D., & Pouder, D. B. (2009). Ammonia in aquatic systems. University of Florida IFAS Extension Publication# FA-16.
  7. US Environmental Protection Agency. (2013). Aquatic Life Ambient Water Quality Criteria for AmmoniaFreshwater.
  8. Randall, D. J., & Wright, P. A. (1987). Ammonia distribution and excretion in fish. Fish Physiology and Biochemistry, 3 (3), 107-120. https://doi.org/10.1007/BF02180412
  9. Smart, G. (1976). The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). Journal of Fish Biology, 8 (6), 471-475. https://doi.org/10.1111/j.1095-8649.1976.tb03990.x
  10. Levit, S. M. (2010). A literature review of effects of ammonia on fish. Center for Science in Public Participation Bozeman, Montana. conservationgateway.org. Retrieved from: https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/alaska/sw/cpa/Documents/L2010ALR122010.pdf.
  11. McKenzie, D. J., Shingles, A., Claireaux, G., & Domenici, P. (2008). Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiological and Biochemical Zoology, 82(4), 353-362. https://doi.org/10.1086/590218
  12. European Inland Fisheries Advisory Commission. (1970). Water Quality Criteria for European Freshwater Fish. Report on ammonia and in land fisheries. EIFAC Tech. Paper, 1, 1.
  13. El-Shebly, A. A., & Gad, H. A. M. (2011). Effect of chronic ammonia exposure on growth performance, serum growth hormone (GH) levels and gill histology of Nile tilapia (Oreochromis niloticus). J Microbiol Biotechnol Res, 1(4), 183-197.
  14. Boudreaux, P. J., Ferrara, A. M., & Fontenot, Q. C. (2007). Acute toxicity of ammonia to spotted gar, Lepisosteus oculatus, alligator gar, Atractosteus spatula, and paddlefish, Polyodon spathula.Journal of the World Aquaculture Society, 38(2), 322-325. https://doi.org/10.1111/j.1749-7345.2007.00104.x
  15. Tilak, K. S., Lakshmi, S. J., & Susan, T. A. (2002). The toxicity of ammonia, nitrite and nitrate to the fish, Catla catla (Hamilton).Journal of environmental biology, 23(2), 147-149.
  16. Kumar, P. V., Naidu, G. N., Satyanarayana, B., & Shameem, U. (2017). Effect of Ammonia Toxicity on the biochemical and enzymatic activity of Indian major carp Labeo rohita (Ham, 1822). Journal of environmental biology, 23 (2), 147-149.
  17. Colt, J., & Tchobanoglous, G. (1976). Evaluation of the short-term toxicity of nitrogenous compounds to channel catfish, Ictalurus punctatus. Aquaculture, 8(3), 209-224. https://doi.org/10.1016/0044-8486(76)90084-3
  18. Nutrients: Phosphorus, Nitrogen Sources, Impact on Water QualityA General Overview (2008). Minnesota Pollution Control Agency.
  19. Paerl, H. W., Valdes, L. M., Joyner, A. R., Peierls, B. L., Piehler, M. F., Riggs, S. R., & Clesceri, E. J. (2006). Ecological response to hurricane events in the Pamlico Sound system, North Carolina, and implications for assessment and management in a regime of increased frequency. Estuaries and Coasts, 29(6), 1033-1045. https://doi.org/10.1007/BF02798666
  20. Ulén, B. M., & Weyhenmeyer, G. A. (2007). Adapting regional eutrophication targets for surface waters — influence of the EU Water Framework Directive, national policy and climate change. Environmental Science & Policy, 10(7-8), 734-742. https://doi.org/10.1016/j.envsci.2007.04.004
  21. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological sciences journal, 54(1), 101-123. https://doi.org/10.1623/hysj.54.1.101
  22. Chukwu, L. O., & Okpe, H. A. (2006). Differential response of Tilapia guineensis fingerlings to inorganic fertilizer under various salinity regimes. Journal of environmental biology, 27(4), 687-690.
  23. Liu, X., Tiquia, S. M., Holguin, G., Wu, L., Nold, S. C., Devol, A. H., & Zhou, J., et al. (2003). Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico. Appl. Environ. Microbiol., 69(6), 3549-3560. https://doi.org/10.1128/AEM.69.6.3549-3560.2003
  24. van Bussel, C. G., Mahlmann, L., Kroeckel, S., Schroeder, J. P., & Schulz, C. (2013). The effect of high ortho-phosphate water levels on growth, feed intake, nutrient utilization and health status of juvenile turbot (Psetta maxima) reared in intensive recirculating aquaculture systems (RAS). Aquacultural engineering, 57, 63-70. https://doi.org/10.1016/j.aquaeng.2013.08.003
  25. Strauch, S. M., Bahr, J., Baßmann, B., Bischoff, A. A., Oster, M., Wasenitz, B., & Palm, H. W. (2019). Effects of Ortho-Phosphate on Growth Performance, Welfare and Product Quality of Juvenile African Catfish (Clarias gariepinus). Fishes, 4(1), 3. https://doi.org/10.3390/fishes4010003
  26. Kim, E., Yoo, S., Ro, H. Y., Han, H. J., Baek, Y. W., Eom, I. C., & Choi, K., et al. (2013). Aquatic toxicity assessment of phosphate compounds. Environmental health and toxicology, 28. https://doi.org/10.5620/eht.2013.28.e2013002 
  27. Voda rybohospodarskykh pidpryiemstv. Zahalni vymohy ta normy. (2006). SOU-05.01.-37-385:2006. Standart minahropolityky Ukrainy. Kyiv: Ministerstvo ahrarnoi polityky Ukrainy.
  28. Eshchenko, N. D., & Volskyi, H. H. (1982). Opredelenye aktvnosty suktsynatdehydrohenazy. Metody byokhymycheskykh yssledovanyi (lypydniy y enerhetycheskyi obmen). Prokhorovoi M. Y. (Ed.). Leningrad: Lenynhr. un-t, 210-212.
  29. Khokhlov, A. P., Sydorova, N. V., & Alyeva, Kh. K. (1990). Sposob opredelenyia aktyvnosty hlutamatdehydrohenazy v byolohycheskykh obektakh. Avtorskoe yzobretenye SU 1573419 Al. № 1573419. patents.su. Retrieved from http://patents.su/2-1573419-sposob-opredeleniya-aktivnosti-glutamatdegidrogenazy-v-biologicheskikh-obektakh.html.
  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275.
  31. Shapyro, D. K. (1976). Praktykum po byolohycheskoi khymyy. Mynsk: Vyeshaia shkola, 169-170.
  32. Prychepa, M. V. (2016). Osoblyvosti adaptatsii aboryhennykh okunevykh ryb do dii ekolohichnykh chynnykiv vodnoho seredovyshcha. Extended abstract of candidate’s thesis. Kyiv: In-t hidrobiolohii.
  33. Zutshi, B., Noor, N., & Sreekala, G. (2015). Assessment of protein, glycogen and activity of ctivity of phosphatases of Labeo rohita in response to physico-chemical parameters of lakes of Bangalore Assessment. THE BIOSCAN, 10(4), 1531-1537.
  34. Palanisamy, P., Sasikala, G., Mallikaraj, D., Bhuvaneshwari, N., & Natarajan, G. M. (2012). Activity levels of phosphatases of the air-breathing catfish Mystus cavasius exposed to electroplating industrial effluent chromium. Biology and Medicine, 4(2), 60-64.
  35. Kurbatova, I. M., Yevtushenko, M. Y., Zakharenko, M. O., & Chepil, L. V. (2018). Activity of Enzymes of Blood Plasma of Carp (Cyprinus carpio) under Albendazole Impact. Hydrobiological Journal, 54(4), 72-77. https://doi.org/10.1615/HydrobJ.v54.i4.70
  36. Nelson, D. L., Koks, M. M., & Lenyndzher, A. (2017). Osnovy byokhymyy Lenyndzhera, 588-589.
  37. Mohamed, F. A. S., & Gad, N. S. (2008). Environmental pollution-induced biochemical changes in tissues of Tilapia zillii, Solea vulgaris and Mugil capito from Lake Qarun, Egypt. Global Vet, 2(6), 327-336.
  38. Cicik, B., & Engin, K. (2005). The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758). Turkish Journal of Veterinary and Animal Sciences, 29(1), 113-117.
  39. Ceron, J. J., Sancho, E., Ferrando, M. D., Gutierrez, C., & Andreu, E. (1997). Changes in carbohydrate metabolism in the eel anguilla anguilla, during short‐term exposure to diazinon. Toxicological & Environmental Chemistry, 60(1-4), 201-210. https://doi.org/10.1080/02772249709358464
  40. Jyothi, B., & Narayan, G. (1997). Effect of phorate on certain protein profiles of serum in freshwater fish, Clarias batrachus (Linn.). Journal of Environmental Biology, 18(2), 137-140.
  41. Neff, J. M. (1985). Use of biochemical measurements to detect pollutant-mediated damage to fish. Aquatic toxicology and hazard assessment: seventh symposium. ASTM International, 155-183. https://doi.org/10.1520/STP36266S
  42. Bhattacharya, H., & Lun, L. (2005). Biochemical effects to toxicity of CCl4 on rosy barbs (Puntius conchonius). Our Nature, 3(1), 20-25. https://doi.org/10.3126/on.v3i1.330
  43. Adamu, K. M., & Kori-Siakpere, O. (2011). Effects of sublethal concentrations of tobacco (Nicotiana tobaccum) leaf dust on some biochemical parameters of Hybrid catfish (Clarias gariepinus and Heterobranchus bidorsalis). Brazilian Archives of Biology and Technology, 54(1), 183-196. https://doi.org/10.1590/S1516-89132011000100023