Ribogospod. nauka Ukr., 2016; 3(37): 111-122
DOI: https://doi.org/10.15407/fsu2016.03.122
УДК 577.115:639.215.2:591.543.42

pdf35THE LIPID COMPOSITION OF TISSUE OF SCALY CARP (CYPRINUS CARPIO L.) IN THE CONDITIONS OF ARTIFICIAL CARBON HIBERNATION

S. Sysolyatin, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences of Ukraine, Kyiv 

Purpose. Establish and compare the content of the total lipids in the liver, skeletal muscle, gill and brain pond carp active life condition and under artificial hibernation carbon.

Methodology. The experiments were conducted on the Ukrainian scaly carp breed (Cyprinus caprio L.) weighing 250–270 g. To conduct research to form two groups (control — 5 copies of the fish and an experimental — each point hypobiosis exposure to 5 copies of the fish). Introduction of fish hypobiotically state conducted for the use of a patented model artificial hibernation. The selection of material performed by opening the first and second fish group on the 3, 6 and 24 hours of exposure, then it is frozen and stored in liquid nitrogen. Lipid extraction after homogenization of brain tissue, liver, skeletal muscle and gills was performed according to Folch. The content of the total lipids (from the weight of the dry residue) after extraction was determined using the gravimetric method. The separation into individual lipid fractions were determined thin layer chromatography by plates "Silufol". Quantitative determination of total phospholipids — hydroxamate method; cholesterol — colorimetric method with three ferric chlorides. All the results are treated variation-statistical method using the Student's t-tests.

Findings. These results suggest that the content of total lipids, phospholipids and cholesterol in the tissues of the carp pond in the active state of life is significantly different.
The content of the total lipids in the liver, skeletal muscle, gill and brain in a carp pond introducing carbon dioxide into a state of artificial hibernation (hypercapnic hypoxia-medium) is reduced in comparison with the control. Under these conditions, noted a slight increase in tissue phospholipids, as well as a significant increase in cholesterol and the coefficient (CL/PL), especially in the liver, indicating that the use of lipids in energy and adaptation processes.

Originality. Lipid composition studied liver, skeletal muscle, gill and brain carp active life condition and carbon dioxide under artificial hibernation. The content of the total lipids in the tissues of the research carp throughout the exposition of artificial hibernation carbon dioxide decreases, indicating that the use of lipids in energy processes. The growth of the content of phospholipids and cholesterol in the tissues of the carp in the conditions of artificial hibernation carbon dioxide leads to the development of adaptive adaptation of organisms to the environment.

Practical value. The results make it possible to assess the redistribution of lipids in fish tissue of the body due to changes in environmental conditions (artificial carbon hibernation).

Keywords: carp, artificial carbon hibernation, lipids, phospholipids, cholesterol.

REFERENCES

  1. Herminghuysen, D., Vaughan, M., Pace, R. M., Bagby, G., & Cook, C. B. (1995). Measurement and seasonal variations of black bear adipose lipoprotein lipase activity. Physiology and Behavior., 57, 2, 271-275. http://dx.doi.org/10.1016/0031-9384(94)00246-2
  2. Talposh, V. S. (2000). Zoolohiya. Slovnyk-dovidnyk. Ponyattya, terminy. Ternopil' : Navchal'na knyha-Bohdan.
  3. Tymofeev, N. N. (2005). Gipobioz i kriobioz. Proshloe, nastoyashchee, budushchee. Moskva : Inform-Znanie.
  4. Denkov, V. D. (1988). Na hrany zhyzny. (Y. M. Saburovoy, Trans.). Moskva : Znanie.
  5. Mel’nychuk, D. O., & Mel’nychuk, S. D. (2007). Hipobioz tvaryn – molekulyarni mekhanizmy ta praktychne znachennya dlya sil's'koho hospodarstva i medytsyny: monohrafiya. Kyiv : NAU.
  6. Lovern, J. A. (1964). The lipids of marine organisms. Oceanogr. Mar. Biol., 2, 169-191.
  7. Guschina, L. A., & Harwood, J. L. (2006). Mechanisms of temperature adaptation in poikilotherms. FEBS Lett., 580, 23, 5477-5483. http://dx.doi.org/10.1016/j.febslet.2006.06.066
  8. Aloia, R. S. (1979). Brain lipid composition of the hibernating & ground squirrel, Cittelus lateralis. J. Therm. Biol., 4, 3, 223-231. http://dx.doi.org/10.1016/0306-4565(79)90006-8
  9. Sabodash, V. M. (2004). Rybovodstvo. Donetsk : Izdatel'stvo Stalker.
  10. Mel'nychuk, S. D., Mel'nychuk, D. O., & Tereshchenko, S. V. (2001). Pat. 37303 Ukrayina, 7 A01K63/02, A01K63/04, A01K61/00, G09V23/28 Sposib perevedennya ta zberihannya ryby v stani shtuchnoho hipobiozu i ustanova dlya yoho zdiysnennya. Ukraine Patent № 37303.
  11. Dekhtyar'ov, P. A., Sherman, I. M., & Pylypenko, Yu. V. et al. (2001). Fiziolohiya ryb : Praktykum : navch. posib. Dekhtyar'ov P. A. (Ed.). Kyiv : Vishha shkola.
  12. Man'ko, V. V., Hal'kiv, M. O., & Klevets', M. Yu. (2005). Osnovy tekhniky laboratornykh robit u fiziolohichnykh doslidzhennyakh: Navchal'nyy posibnyk. L'viv : LNU imeni Ivana Franka.
  13. Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226, 497-509.
  14. Kates, M. (1986). Techniques of lipidology. Amsterdam : Elsevier.
  15. Rivis, J. F., & Fedoruk, R. S. (2010). Kil`kisni khromatografichni metody vyznachennya lipidiv i zhirnykh kislot u biologichnomu materiali. Metodychnyi posibnyk. L`viv : SPOLOM.
  16. Kopytov, Yu. P. (1983) Novyi variant tonkoslojnoj hromatografii lipidov. Ekologia moria, 12, 76-80.
  17. Prokhorova, M. I. (1982). Metody biokhimicheskikh issledovaniy: lipidnyy i energeticheskiy obmen: uchebnoe posobie. Leningrad : LGU.
  18. Kulikov, A. Yu. (2011). Tonkosharova khromatografiya: teoretychni osnovy ta praktychne vykorystannya: navchalno-metodychnyj posibnyk. Kharkiv : KhNU imeni V. N. Karazina.
  19. Petrovskiy, V. I., Regerand, T. I., & Lizenko, E. I. (1986) Ekstraktsiya, razdelenie i kolichestvennoe opredelenie lipidnykh fraktsiy syvorotki krovi. Laboratornoe delo, 6, 339-343.
  20. Engelbrecht, F. M., Mori, F., & Anderson, I. T. (1974). Cholesterol determination in serum. A rapid direct method. S. A. Med. J., 48, 250-256.
  21. Kokunyn, V. A. (1975). Statystycheskaya obrabotka dannykh pry malom chysle opytov. Ukr. byokhym. zhurn., 47, 6, 776-790.
  22. Klymov, A. N., & Nykul'cheva, N. H. (1999). Obmen lipidov i lipoproteidov i ego narusheniya. Sankt-Peterburg : Piter Kom.
  23. Popova, E. M., & Koshchiy, I. V. (2007). Lipidy yak komponent adaptatsiyi ryb do ekolohichnoho stresu. Rybohospodars'ka nauka Ukrayiny, 1, 49-56.
  24. Lav, R. M. (1976). Khimicheskaya biologiya ryb. Moskva : Pyshchevaya promyshlennost'.
  25. Strohanov, N. S. (1962). Ekolohycheskaya fyzyolohyya ryb. Moskva : Izd-vo Moskovskogo universiteta.
  26. Kolomyytseva, Y. K. (2011). Lipidy v gibernatsii, iskusstvennom gipobioze mlekopitayushchikh: obzor. Biokhimiya, 76, 12, 1604-1614.
  27. Kreps, E. M. (1967). Fosfolipidy kletochnykh membran nervnoy sistemy v razvitii zhivotnogo mira. Leningrad : Nauka.
  28. Sidorov, V. S. (1983). Ekologicheskaya byiokhimiya ryb. Lipidy. Leningrad : Nauka.
  29. Meerson, F. Z. (1986). Osnovnye zakonomernosti individual'noy adaptatsii. Fiziologiya adaptatsionnykh protsessov. Moskva : Nauka.
  30. Bloom, M., & Mouritsen, O. G. (1988). The evolution of membranes. Can. J. Chem., 66, 706-712. http://dx.doi.org/10.1139/v88-123
  31. Finean, J., & Michele, P. (1991). Membrane bound enzymes. Membrane structures. North. : Holland Biomed. Press, 161-214.
  32. Daleke, D. L. (2003). Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res., 44, 233-242. http://dx.doi.org/10.1194/jlr.R200019-JLR200