Ribogospod. nauka Ukr., 2016; 1(35): 5-30
DOI: https://doi.org/10.15407/fsu2016.01.005
УДК 628.394.6:597.553.2



D. Yanovych, This email address is being protected from spambots. You need JavaScript enabled to view it. , Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj, Lviv
І. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
T. Shvets, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv

Purpose. Due to the pollution of fisheries water bodies by industrial and agricultural waste waters, as well as by xenobiotics coming from other sources, taking into account a pridictable increase in the amounts of such effluents in the short and long terms, the problems related to the study of the effects of the pollutants of different nature and origin on aquatic organisms, especially fish, as well as a prediction of possible adverse consequences on aquatic ecosystems, becomes particularly important. The aim of our work was an analysis and synthesis of existing literature data concerning the indication in the biomonitoring of aquatic environments based on biological markers of salmonids as highly sensitive objects of fish fauna to external factors.

Findings. The review summarizes and systematizes the data concerning the use of salmonids in biomonitoring studies. Furthermore, we highlighted and characterized the specificity of bioindication parameters of the aquatic environment state, such as the biochemical, genetic, physiological, morphological, histopathological, behavioral and population markers and noted the effects of hydroecosystem ecotoxication on different levels of biological organization (cell, individual, population, fish community). We also described the possibility of biological monitoring based on saprobic indexes identified for indicator species belonging to salmonids.

Originality. In the article describes the structure, pros and cons of the use of specific biomarkers of individual salmonid fish and their populations for assessing the ecological status of aquatic environments.

Practical value. The data given in the article can be used to improve the system of the ecological monitoring of aquatic environments by extending the range of indicator indices with organism and population biomarkers of highly sensitive salmonid species.

Keywords: biomonitoring, salmonids, aquatic ecosystems, biochemical markers, genetic biomarkers, physiological biomarkers, morphological biomarkers, histopathological biomarkers, population biomarkers.


  1. Alabaster, Dzh., & Lloyd, R. (1984). Kriterii kachestva vody dlya presnovodnykh ryb. Moskva : Legkaya i pishchevaya promyshlennost'.
  2. Vasenko, A. G. (1988). O roli biotestirovaniya i bioindikatsii v sisteme toksikologicheskogo kontrolya. Pervaya Vsesoyuznaya konferentsiya po rybokhozyaystvennoy toksikologii: tezisy dokladov. Ch. 1. Riga, 55-56.
  3. Moiseenko, T. I. (2009). Vodnaya ekotoksikologiya. Teoreticheskie i prikladnye aspekty. Moskva : Nauka.
  4. Antonova, V. P., Bezumova, A. L., & Zavisha, A. G. et al. (2000). Prichiny neblagopoluchnogo sostoyaniya zapasov lososevidnykh ryb Pechorskogo basseyna v sovremennykh usloviyakh. Sbornik nauchnykh trudov GosNIORKh, 326, 31-40.
  5. Chovanec, A., Hofer, R., & Schiemer, F. (2003). Fish as bioindicators. Bioindicators & biomonitors. Principles, concepts and applications. Oxford : Elsevier, 639-676.
  6. Scardi, M., Tancioni, L., & Cataudella, S. (2006). Monitoring methods based on fish. Biological monitoring of rivers. Chichester : John Wiley & Sons, 135-153.
  7. Kurzykina, L. G., & Artem'eva, N. V. (1985). Vliyanie poliamidnoy smoly «Kyumene» na ryb i vodnykh bespozvonochnykh. Problemy vodnoy toksikologii. Petrozavodsk, 54-57.
  8. Lazorchak, J. M., Hill, B. H., & Brown, B. S. et al. (2003). USEPA biomonitoring and bioindicator concepts needed to evaluate the biological integrity of aquatic systems. Bioindicators & biomonitors. Principles, concepts and applications. Oxford : Elsevier, 831-874.
  9. Van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13, 57-149.
  10. Dudkin, S. I. (2005). Biokhimicheskie metody bioindikatsii toksicheskogo vozdeystviya na gidrobionty. Metody rybokhozyaystvennykh i prirodookhrannykh issledovaniy v Azovo-Chernomorskom basseyne. Krasnodar, 292-315.
  11. Demchenko, V. A., Antonovskiy, A. G., & Demchenko, N. A. et al. (2008). Bioindikatsiya kachestva vody i sostoyaniya gidroekosistem s ispol'zovaniem kharakteristik osobey, populyatsiy i soobshchestv ryb. Suchasni problemy teoretychnoi ta praktychnoi ikhtiolohii : I Mizhnarodna ikhtiolohichna naukovo-praktychna konferentsiia : tezy. Kaniv, 52-56.
  12. Schlenk, D., Handy, R., & Steinert, S. (2008). Biomarkers. The toxicology of fishes. Boca Raton ; London ; New York : CRC Press, 683-731.
  13. Munkittrick, K. R., & McCarty, L. S. (1995). An integrated approach to aquatic ecosystem health: top-down, bottom-up or middle-out? J. Aquat. Ecosyst. Health, 4, 77-90.
  14. Rudneva, I. I. (2006). Primenenie biomarkerov ryb dlya ekotoksikologicheskoy diagnostiki vodnoy sredy. Rybne hospodarstvo Ukrainy, 1(42), 20-24.
  15. Stegeman, J. J., Brouwer, M., & DiGuilio, R. T. (1992). Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Boca Raton, FL : Lewis Publishers, 235-335.
  16. Stegeman, J. J. (1994). Biochemistry and molecular biology of monooxygenases: current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species. Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspectives. Boca Raton, FL : Lewis Publishers, 87-206.
  17. Stegeman, J. J., & Lech, J. J. (1991). Cytochrome P450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ. Health Perspect., 90, 101-109.
  18. Stegeman, J. J. (1993). The cytochromes P450 in fish. Molecular Biology Frontiers. Amsterdam : Elsevier.
  19. Bucheli, T. D., & Fent, K. (1995). Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. CRC Crit. Rev. Environ. Sci. Technol., 25, 201-268.
  20. Cook, P. M., Zabel, E. W., & Peterson, R. E. (1997). The TCDD toxicity equivalence approach for characterizing risks for early life-stage mortality in trout. Chemically induced alterations in functional development and reproduction of fishes. Pensacola, FL : SETAC Press, 9-27.
  21. Buhler, D. R., & Wang-Buhler, J. L. (1998). Rainbow trout cytochrome P450s: purification, molecular aspects, metabolic activity, induction, and role in environmental. Comp. Biochem. Physiol., 121C, 107-137.
  22. Sarasquete, C., & Segner, H. (2000). Cytochrome P4501A (CYP1A) in teleostean fishes. A review of immunohistochemical studies. The Science of the Total Environment, 247, 2-3, 313-332.
  23. Hahn, M. E., Merson, R. R., & Karchner, S. I. (2005). Xenobiotic receptors in fish: structural and functional diversity and evolutionary insights. Biochemistry and molecular biology of fishes. 6. Environmental Toxicology. Amsterdam : Elsevier, 191-232.
  24. Yurchenko, V. V., & Chuyko, G. M. (2010). Aktivnost' etoksirezorufin-O-dietilazy (EROD) ryb kak biomarker zagryazneniya vodnoy sredy stoykimi organicheskimi zagryaznyayushchimi veshchestvami. Sovremennye problemy fiziologii i biokhimii vodnykh organizmov. T. 1 : Ekologicheskaya fiziologiya i biokhimiya vodnykh organizmov : sbornik nauchnykh statey. Petrozavodsk : KarNTs RAN, 316-319.
  25. Johansson-Sjöbeck, M. L., & Larsson, A. (1979). Effects of inorganic δ-amino levulinic acid dehydratase activity and haematological variables in rainbow trout (Salmo gairdnerі). Arch. Environ. Contam. Toxicol., 8, 419-431.
  26. Hyllner, J. S., Haux, C., & Andersson, T. et al. (1989). Cortisol induction of metallothionein in primary cultures of rainbow trout hepatocytes. J. Cell Physiol., 139, 24-28.
  27. Dallinger, R., Egg, M., & Köck, G. et al. (1997). The role of metallothionein in cadmium accumulation of Arctic char (Salvelinus alpinus) from high mountain lakes. Aquat. Toxicol., 38, 47-66.
  28. Iwama, G. K., Thomas, M. M., & Vijayan, M. M. et al. (1998). Stress protein expression in fish. Rev. Fish Biol. Fish., 8, 35-56.
  29. Iwama, G. K., Vijayan, M. M., & Forsyth, R. B. et al. (1999). Heat shock proteins and physiological stress in fish. Am. Zoologist., 39, 901-909.
  30. Janssens de Bisthoven, L. (1999). Biomonitoring with morphological deformaties in aquatic organisms. Biomonitoring of Polluted Water. Environmental Research Forum, 9, 65-94.
  31. Petukhov, S. A., Glubokov, A. I., & Gorkin, I. N. (1983). Rol' metallotioneina v kontsentrirovanii tyazhelykh metallov rybami. Ekologicheskie aspekty khimicheskogo i radioaktivnogo zagryazneniya vodnoy sredy : sbornik nauchnykh trudov VNIRO. M. : Legkaya i pishchevaya promyshlennost', 36-40.
  32. Roesijadi, G. (1992). Metallothionein in metal regulation and toxicology. Aquat. Toxicol., 22, 81-114.
  33. Sato, M., & Bremner, I. (1993). Oxygen free radicals and metallothionein. Free Radic. Biol. Med., 14, 325-337.
  34. Olsson, P. E. (1993). Metallothionein gene expression and regulation in fish. Biochemistry and Molecular Biology of Fishes. Amsterdam : Elsevier, 259-278.
  35. Olsson, P. E. (1996). Metallothioneins in fish: induction and use in environmental monitoring. Toxicology of Aquatic Pollution: Physiological, Molecular and Cellular Approaches. Cambridge, U.K. : Cambridge University Press, 187-203.
  36. Olsson, P. E., Kling, P., & Petterson, C. et al. (1995). Interaction of cadmium and oestradiol 17 beta on metallothionein and vitellogenin synthesis in rainbow trout (Oncorhynchus mykiss). Biochem. J., 307, 197-203.
  37. Farag, A. M., Stansbury, M. A., & Hogstrund, C. et al. (1995). The physiological impairment of free-ranging brown trout exposed to metals in the Clarke Fork River, Montana. Can. J. Fish. Aquat. Sci., 52, 2038-2050.
  38. Stoliar, O. B. (2004). Rol metalotioneiniv v detoksykatsii yoniv midi i tsynku, marhantsiu ta svyntsiu v orhanizmi prisnovodnykh ryb i moliuskiv. Extended abstract of Doctor’s thesis. Lviv.
  39. Stoliar, O. B., Falfushynska, H. I., & Mykhailiv, R. L. et al. (2005). Porivnialnyi analiz funktsii metalotioneiniv prisnovodnykh tvaryn za dii na orhanizm vazhkykh metaliv. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka, 3(26), 423-425.
  40. Kling, P., & Olsson, P. E. (2005). Metallothionein: structure and regulation. Biochemistry and Molecular Biology of Fishes. 6. Environmental Toxicology. Amsterdam : Elsevier, 289-302.
  41. Falfushynska, H. I., Hnatyshyna, L. L., & Turta, O. O. (2013). Funktsii metalotioneiniv ta systemy antyoksydantnoho zakhystu za dii Co- ta Zn-vmisnykh nanokompozytiv na karasia sribliastoho (Carassius auratus gibelio). Ukrainskyi biokhimichnyi zhurnal, 85, 3, 52-61.
  42. Kothary, R. K., & Candido, E. P. M. (1982). Induction of a novel set of polypeptides by heat shock or sodium arsenite in cultured cells of rainbow trout. Can. J. Biochem., 60, 347-357.
  43. Sanders, B. M. (1993). Stress proteins in aquatic organisms: an environmental perspective. CRC Crit. Rev. Toxicol., 23, 49-75.
  44. Williams, J. H., Farag, A. M., & Stasbury, M. A. et al. (1996). Accumulation of HSP70 in juvenile and adult rainbow trout gill exposed to metal-contaminated water and/or diet. Environ. Toxicol. Chem., 15, 1324-1328.
  45. Vijayan, M. M., Pereira, C., & Forsyth, R. B. et al. (1997). Handling stress does not affect the expression of hepatic heat shock protein 70 and conjugation enzymes in rainbow trout treated with beta-naphthoflavone. Life Sci., 61, 117-127.
  46. Iwama, G. K., Thomas, P. T., & Forsyth, R. B. et al. (1998). Heat shock protein expression in fish. Rev. Fish Biol. Fish, 8, 35-56.
  47. Lunde, M., Gosvik, B. E., & Hamre, K. (1998). Induction of heme oxygenase in fish by heavy metals, phenylhydrazine and high lipid diets. 9th International Symposium on Pollutant Responses in Marine Organisms (PRIMO 9) : рroceedings. Bergen.
  48. Cajaraville, M. P., Hauser, L., & Carvalho, G. et al. (2003). Genetic damage and the molecular/cellular response to pollution. Effects of pollution on fish. Molecular effects and population responses. Oxford : Blackwell Science, 14-82.
  49. Oniskovets, M. Ya., & Snitinskiy, V. V. (2013). Vliyanie ionov svintsa na uroven' ekspressii belkov teplovogo shoka HSP70 i HSS70 v golovnom mozge Cyprinus carpio L. Trudy BGU, 8, 1, 167-169.
  50. Kurelec, B. (1997). A new type of hazardous chemical: the chemosensitizers of multixenobiotic resistance. Environ. Health Perspect., 105, 855-860.
  51. Kurelec, B. (1992). The multixenobiotic resistance mechanism in aquatic organisms. CRC Crit. Rev. Toxicol., 22, 23-43.
  52. Sturm, A., Ziemann, C., & Hirsch-Ernst, K. I. et al. (2001). Expression and functional activity of P-glycoprotein in cultured hepatocytes from Oncorhynchus mykiss. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R1119-1126.
  53. Sturm, A., & Segner, H. (2005). P-glycoproteins and xenobiotic efflux transport in fish. Biochemistry and Molecular Biology of Fishes, 6, 495-533.
  54. Loncar, J., Popovic, M., & Zaja, R. et al. (2010). Gene expression analysis of the ABC efflux transporters in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., C, 151, 209-215.
  55. Valton, E., Amblard, C., & Wawrzyniak, I. et al. (2013). P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes. Scientific Reports, 3.
  56. Forlin, L., Blom, S., & Celander, M. et al. (1996). Effects on UDP glucuronosyl transferase, glutathione transferase, DT-diaphorase and glutathione reductase activities in rainbow trout liver after long-term exposure to PCB. Mar. Environ. Res., 42, 213-216.
  57. Forlin, L., Lemaire, P., & Livingstone, D. R. (1995). Comparative studies of hepatic xenobiotic metabolizing and antioxidant enzymes in different fish species. Mar. Environ. Res., 39, 201-204.
  58. Borvinskaya, E. V., Smirnov, L. P., & Nemova, N. N. (2009). Glutation-S-transferazy ryb — potentsial'nye ekologobiokhimicheskie indikatory antropogennogo vozdeystviya na vodnuyu sredu (obzor). Trudy Karel'skogo nauchnogo tsentra RAN, 3, 8-19.
  59. Collier, T. K., Johnson, L. L., & Myers, M. S. (1996). Incorporation of biomarkers into ecological risk assessments of contaminated nearshore marine habitats. Mar. Environ. Res., 42, 274-275.
  60. Ruddock, P. J., Bird, D. J., & McCalley, D. V. (2002). Bile metabolites of polycyclic aromatic hydrocarbons in three species of fish from the severn estuary. Ecotoxicol. Environ. Saf., 51, 97-105.
  61. Melancon, M. J., Alscher, R., & Benson, W. H. et al. (1992). Metabolic products as biomarkers. Biomarkers: Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Boca Raton, FL : Lewis Publishers, 87-123.
  62. Xu, H., Lesage, S., & Munkittrick, K. R. (1994). Suitability of carboxylated porphyrin profiles as a biochemical indicator in whitefish (Coregonus clupeaformis) exposed to bleached kraft pulp mill effluent. Environ. Toxicol. Water Q., 9, 223-230.
  63. Spear, P. A., Bilodeau, A. Y., & Branchard, A. (1992). Retinoids: from metabolism to environmental monitoring. Chemosphere, 25, 1733-1738.
  64. Ndayibagira, A., Cloutier, M. J., & Anderson, P. D. et al. (1995). Effects of 3,3′,4,4′-tetrachlorobiphenyl on the dynamics of vitamin A in brook trout (Salvelinus fontinalis) and intestinal retinoid concentrations in lake sturgeon (Acipenser fulvescens). Can. J. Fish. Aquat. Sci., 52, 512-520.
  65. Alsop, D., Van der Kraak, G., & Brown, S. B. (2005). The biology and toxicology of retinoids in fish. Biochemistry and Molecular Biology of Fishes. 6. Environmental Toxicology. Amsterdam : Elsevier, 413-430.
  66. Gillespie, R. B., & Guttman, S. I. (1993). Allozyme frequency analysis of aquatic populations as an indicator of contaminant-induced impacts. Environmental Toxicology and Risk Assessment. 2. Philadelphia, PA : American Society for Testing and Materials, 34-135.
  67. Anderson, S., Sadinski, W., & Shugart, L. (1994). Genetic and molecular ecotoxicology: a research framework. Environ. Health Perspect., 102, suppl. 12, 3-8.
  68. Roy, N. K., Stabile, J., & Seeb, J. E. et al. (1999). High frequency of K-ras mutations in pink salmon embryos experimentally exposed to Exxon Valdez oil. Environ. Toxicol. Chem., 18, 1521-1528.
  69. Theodorakis, C. W., & Wirgin, I. I. (2002). Genetic responses as population-level biomarkers of stress in aquatic ecosystems. Biological indicators of aquatic ecosystem stress. Bethesda, MD : American Fisheries Society, 149-186.
  70. Wirgin, I. I., & Theodorakis, C. W. (2002). Molecular biomarkers in aquatic organisms: DNA damage and RNA expression. Biological indicators of aquatic ecosystem stress. Bethesda, MD : American Fisheries Society, 43-110.
  71. Schalburg, K. R. von, Rise, M. L., & Cooper, G. A. et al. (2005). Fish and chips: various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics, 6, 126.
  72. Hook, S. E., Skillman, A. D., & Small, J. A. et al. (2006). Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquat. Toxicol., 77, 372-385.
  73. Liu, Q., Basu, N., & Goetz, G. et al. (2013). Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Ecotoxicology, 22(4), 740-751.
  74. Korcock, D. E., Houston, A. H., & Gray, J. D. (1988). Effects of sampling conditions on selected blood variables of rainbow trout, Salmo gairdneri, Richardson. J. Fish Biol., 33, 319-330.
  75. Iwama, G. K., McGeer, J. C., & Pawluk, M. P. (1989). The effects of five fish anaesthetics on acid-base balance, haematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can. J. Zool., 76, 2065-2073.
  76. Waring, C. P., Stagg, R. M., & Poxton, M. G. (1992). The effects of handling on flounder (Platichthys flesus L.) and Atlantic salmon (Salmo salar L.). J. Fish Biol., 41, 131-144.
  77. Houston, A. H. (1997). Review: are the classical hematological variables acceptable indicators of fish health. Trans. Am. Fish. Soc., 126, 879-894.
  78. Sepúlveda, M. S., Gallagher, E. P., & Gross, T. S. (2004). Physiological changes in largemouth bass exposed to paper mill effluents under laboratory and field conditions. Ecotoxicology, 13, 291-301.
  79. Salman N. A., Ullman J. L., Snekvik K. et al. (2012). Histopathological markers for copper toxicity in rainbow trout fry (Oncorhynchus mykiss). Basrah J. Agric. Sci., 25, 2, 26-39.
  80. Jobling, S., Sheahan, D., & Osborne, J. A. et al. (1996). Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem., 15, 194-202.
  81. Rudneva, I. I., Vakhtina, T. B., & Zalevskaya, I. N. (2007). Izmenenie sostava syvorotochnykh preal'buminov ryb kak otvetnaya reaktsiya na khronicheskoe zagryaznenie morskoy sredy. Problemy immunologii, patologii i okhrany zdorov'ya ryb i drugikh gidrobiontov-2 : Mezhdunarodnaya konferentsiya: materialy. Borok ; Moskva, 230-233.
  82. Ali, Louei Monfared, & Salati, Amir Parviz (2012). Histomorphometric and biochemical studies on the liver of rainbow trout (Oncorhynchus mykiss) after exposure to sublethal concentrations of phenol. Toxicology and Industrial Health., 29, 9, 856-861.
  83. Haux, C., Larsson, Å., & Lithner, G. et al. (1986). A field study of physiological effects on fish in lead-contaminated lakes. Environ. Toxicol. Chem., 5, 283-288.
  84. Jobling, S., Sheahan, D., & Osborne, J. A. et al. (1996). Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem., 15, 194-202.
  85. Pottinger, T. G. Carrick, T. R., & Yeomans, W. E. (2002). The three-spined stickleback as an environmental sentinel: effects of stressors on whole-body physiological indices. J. Fish Biol., 61, 207-229.
  86. Palm, R. C., Powell, D. B., & Skillman, A. (2003). Immunocompetence of juvenile Chinook salmon against Listonella anguillarum following dietary exposure to polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 22, 2986-2994.
  87. Handy, R. D., McGeer, J. C., & Allen, H. E. et al. (2005). Toxic effects of dietborne metals: laboratory studies. Toxic effects of dietborne metal exposure: laboratory studies. Pensacola, FL : SETAC Press, 59-112.
  88. Dethloff, G. M., Bailey, H. C., & Maier, K. J. (2001). Effects of dissolved copper on select hematological, biochemical, and immunological parameters of wild rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol., 40, 371-380.
  89. Ptashynski, M. D., Pedlar, R. M., & Evans, R. E. et al. (2002). Toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis). Aquat. Toxicol., 58, 229-247.
  90. Berntssen, M. H. G., Hylland, K., & Julshamn, K. (2004). Maximum limits of organic and inorganic mercury in fish feed. Aquacult. Nutr., 10, 83-97.
  91. Adiele, R. C., Stevens, D., & Kamunde, C. (2010). Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria. Aquatic Toxicology, 96, 4, 319-327.
  92. Desforges, P. R., Gilmour, K. M., & Perry, S. F. (2001). The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity. J. Comp. Physiol., 171B, 465-473.
  93. Handy, R. D., Jha, A. N., & Depledge, M. H. (2002). Biomarker approaches for ecotoxicological biomonitoring at different levels of biological organisation. Handbook of Environmental Monitoring, 9.1-9.32.
  94. Hinton, D. E., & Laurén, D. J. (1990). Integrative histological approaches to detecting effects of environmental stressors on fishes. Biological Indicators of Stress in Fish. VIII. Bethesda, MD : American Fisheries Society, 51-66.
  95. Hinton, D. E., Baumann, P. C., & Gardner, G. R. et al. (1992). Histopathologic biomarkers. Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Boca Raton, FL : Lewis Publishers, 155-209.
  96. Liebel, S., Tomotake, M. E. M., & Oliveira Ribeiro, C. A. (2013). Fish histopathology as biomarker to evaluate water quality. Ecotoxicol. Environ. Contam, 8, 2, 9-15.
  97. Reddy, P. B., & Rawat, S. S. (2013). Assessment of aquatic pollution using histopathology in fish as a protocol. International Research Journal of Environment Sciences, 2, 8, 79-82.
  98. Ternovenko, V. A., & Nikiforov, E. L. (1987). Povedencheskie reaktsii ryb i ikh ispol'zovanie dlya obnaruzheniya zagryazniteley v vodnoy srede. Metody ikhtiotoksikologicheskikh issledovaniy : Pervyy Vsesoyuznyy simpozium po metodam ikhtiotoksikologicheskikh issledovaniy: tezisy dokladov. Leningrad, 125-126.
  99. Cherkashin, S. A. (1987). Metod otsenki toksichnosti veshchestv, osnovannyy na izbeganii gidrobiontami neblagopriyatnykh faktorov. Metody ikhtiotoksikologicheskikh issledovaniy : Pervyy Vsesoyuznyy simpozium po metodam ikhtiotoksikologicheskikh issledovaniy: tezisy dokladov. Leningrad, 133-135.
  100. Little, E. E., & Finger S. E. (1990). Swimming behaviour as an indicator of sublethal toxicity in fish. Environ. Toxicol. Chem., 9, 13-20.
  101. Handy, R. D., & Depledge, M. H. (1999). Physiological responses: their measurement and use as environmental biomarkers in ecotoxicology. Ecotoxicology, 8, 329-349.
  102. Handy, R. D., Sims, D. W., & Giles, A. (1999). Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquat. Toxicol., 47, 1, 23-41.
  103. Campbell, H. A., Handy, R. D., & Sims, D. W. (2002). Increased metabolic cost of swimming and consequent alterations to circadian activity in rainbow trout (Oncorhynchus mykiss) exposed to dietary copper. Can. J. Fish. Aquat. Sci., 59, 768-777.
  104. Campbell, H. A., Handy, R. D., & Sims, D. W. (2005). Shifts in a fish’s resource holding power during a contact paired interaction: the influence of a copper contaminated diet in rainbow trout. Physiol. Biochem. Zool., 78, 706-714.
  105. Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology, 68, 369-392.
  106. Shakirova, F. M. (2007). Bioindikatsiya zagryazneniya Kuybyshevskogo vodokhranilishcha po morfologicheskim anomaliyam ryb. Ratsional'noe ispol'zovanie presnovodnykh ekosistem — perspektivnoe napravlenie realizatsii natsional'nogo proekta «Razvitie APK» : Mezhdunarodnaya nauchno-prakt. konf. : materialy. Moskva, 370-372.
  107. Shvyreva, N. S. (2007). Ikhtiotsenozy kak effektivnyy indikator ekologicheskogo sostoyaniya vodoemov. Ratsional'noe ispol'zovanie presnovodnykh ekosistem — perspektivnoe napravlenie realizatsii natsional'nogo proekta «Razvitie APK» : Mezhdunarodnaya nauchno-prakt. konf.: materialy. Moskva, 432-433.
  108. Kolkwitz, R., & Marsson, M. (1902). Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna. Aus. 1. BerlinDahlem : Mitteilungen der königlichen Prüfanstalt Wasserversorgung Abwasserbeseitigung, 33-72.
  109. Oleksiv, I. T. (1994). Pokazateli kachestva prirodnykh vod s ekologicheskikh pozitsiy. L'vov : Svit.