Ribogospod. nauka Ukr., 2013; 4(26): 86-96
DOI: https://doi.org/10.15407/fsu2013.04.086
УДК 597-11:639.3
THE ANALYSIS OF THE FLOW INTENSITY OF FREE-RADICAL PROCESSES IN HEPATOPANCREAS TISSUES OF AND SKELETAL MUSCLES OF AGE-2 CARP (CYPRINUS CARPIO) OF DIFFERENT GENESIS
I. Osoba, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
Purpose. To perform determination of the content of individual lipid peroxidation products in hepatopancreas tissues and skeletal muscle of carp of different genesis.
Methods. Determination of free radical products of lipid peroxidation in hepatopancreas tissues of and skeletal muscle of carp was performed by spectrophotometric analysis. In particular, the content of malondialdehyde was determined by reaction with thiobarbituric acid, which at high a temperature in acidic medium proceeds with the formation of colored trimethine complex. The intensity of the formation of lipid hydroperoxides was determined after precipitation of proteins by a solution of trichloroacetic acid and lipid extraction by ethanol with following interaction of the studied extracts of ammonium thiocyanate. To determine the content of diene conjugates in tissues, we used a method, which is based on the formation of conjugated double bonds accompanied by the appearance of a new absorption maximum in the spectrum range of λmax = 233 nm.
The results. As a result of the studies it was found that the content of malondialdehyde in skeletal muscle of two-year scaly and framed carp of Nesvich zonal type is likely lower in comparison with that of skeletal muscle of Amur wild carp and the carp hybrid grows relatively group - hybrid carp .It was marked the growth in the content of diene conjugates in skeletal muscle of Lyubin Nesvich scaly carp compared to framed ones.It was shown the tissue specificity savings to individual products of lipid peroxidation in experimental groups of fish.
The scientific novelty. For the first time, a comparative analysis of the contents of individual products of free radical oxidation in tissues of age-2 scaly carp and framed Nesvich zonal and Lyubin interbreed type with groups such as the Amur wild carp and carp hybrid has been perfomed. Factors providing such intensity of lipid peroxidation processes in tissues of the studied age-2 groups of fish have been characterized.
The practical significance. Comparative analysis of the course of free radical peroxidation processes clearly reflects the level of individual adaptive capacities of different groups of fish. The results of these studies can be used to monitor the physiological state of raised fish as a quality criterion of management level. And also for the improvement of the latter to minimumize the risk of oxidative stress in the organism of raised fish.
Keywords: carp of various genesis, free radicals, lipid peroxidation, malonic dialdehyde, lipid hydroperoxides, diene conjugates.
REFERENCES
1. Martinez-Alvarez, R., Morales, A. & Sanz, A. (2005). Antioxidant defenses in fish: Biotic and abiotic factors. Fish Biology and Fisheries, 15, 75–88. http://dx.doi.org/10.1007/s11160-005-7846-4
2. Osoba, I. A. (2009). Osoblyvosti funktsionuvannya systemy antyoksydantnoho zakhystu orhanizmu. Rybogospodars’ka nauka Ukrayiny, 1, 133–139.
3. Kurs'kyy, M. D. & Kucherenko, S. М. (1993). Biomembranologia. Kyiv: Vyshcha shkola, 231–246.
4. Sybirna, N. O., Mayevs'ka, O. M. & Bars'ka, M. L. (2006). Doslidzhennya okremykh biokhimichnykh pokaznykiv za umov oksydatyvnoh ostresu. L'viv: Vydavnychyy tsentr LNU im. Ivana Franka.
5. Danchuk, V. V. (2006). Peroksydne okysnennya u sil's'kohospodars'kykh tvaryn i ptytsi. Kam'yanets'-Podil's'kyy: ABETKA.
6. Hrytsynyak, І. І., Smolyaninov, K. B. & Yanovych, V. G. (2010). Obmіn lіpіdіv u ryb. Lviv: Тrіаdа plyus.
7. Оsоbа, І. А. (2013). Biolohichna rol' perekysnoho okysnennya lipidiv u zabezpechenni funktsionuvannya orhanizmu ryb. Rybohospodars'ka nauka Ukrayiny, 1, 87–96. http://dx.doi.org/10.15407/fsu2013.01.087
8. Welker, A. F., Moreira, D. C., Campos, E. G. & Hermes-Lima, M. (2013). Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 165 (4), 384–404. http://dx.doi.org/10.1016/j.cbpa.2013.04.003
9. Joyner-Matos, J. & Chapman, L. J. (2013). Persisting in papyrus: Size, oxidative stress, and fitness in freshwater organisms adapted to sustained hypoxia. Comp. Biochem. Physiol. A. Retrieved from website:x.doi.org/10.1016/j.cbpa.2013.03.032.
10. Jia, X., & Zhang, L. X. (2011). Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var. color. Fish Physiolog. Biochem., 37, 97–103. http://dx.doi.org/10.1007/s10695-010-9416-5
11. Vladimirov, Yu. A. (2000). Svobodnye radikaly v biologicheskih sistemah. Soros. obraz. zhurnal, 12, 13–19.
12. Grubinko, V. V. & Leus, Yu. V. (2001). Perekisne okislenie lipidov i antioksidantnaja zashhita u ryb. Gidrobiolog. zhurn. 37, 1, 64–78.
13. Lushchak, V. I., Bagnjukova, T. V. & Luzhna, L. I. (2006). Pokaznyky oksydatyvnogo stresu. 2. Peroksydy lіpіdіv. Ukr. biohim. zhurn., 78(5), 113–119.
14. Winston, G. W. (1991). Oxidant and antioxidant in aquatic animals. Comp. Biochem. Physiol. C. V. 100, 1–2,173–176. http://dx.doi.org/10.1016/0742-8413(91)90148-M
15. Storey, K. B. (1996). Oxidative stress: animal adaptations in nature.Braz. J. Med. Biol. Res., 29, 12. 1715–1733.
16. Lushchak, V. I., Lushchak, L. P., Mota, A. A. etal. (2001). Oxidative stress and antioxidant defenses in gold fish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol. Regulatory Integrative Comp. Physiol., 280, 100–107.
17. Deb, N. & Das, S. (2013). Chlorpyrifos Toxicity in Fish: A Review. Curr. World Environ., 8 (1), 77–84. http://dx.doi.org/10.12944/cwe.8.1.17
18. Fernandez-Davila, M. L., Razo-Estradaa, A. C., Garcıa-Medina, S. et al. (2011). Aluminum-induced oxidative stress and neurotoxicity in grass carp (Cyprinidae-Ctenopharingodon idella). Ecotoxicol. Environ., 1–6.
19. Mahboob, S. (2013). Environmental pollution of heavy metals as a cause of oxidative stress in fish: a review. Life Science Journ, 10 (10s), 336–347.
20. Isaksson C., Sheldon B. C. & Uller T. (2011). The challenges of integrating oxidative stress into life-history biology. BioScience, 61, 3, 194–202. http://dx.doi.org/10.1525/bio.2011.61.3.5
21. Sedeno-Diaz, J. E. & Lуpez-Lуpez, E. (2013). Freshwater Fish as Sentinel Organisms: From theMolecular to the Population Level, a Review. New Advances and Contributions to Fish Biology, 151–173.
22. Zhiteneva, L. D. (2000). Jekologicheskie zakonomernosti ihtiogematologii. Rosrov-na-Donu.
23. Oleksyuk, N. P. & Yanovych, V. G. (2003). Vplyv sezonu na perekysne okysnennya lipidiv u tkanynakh stavkovyk hryb. Biolohia tvaryn, 5(1, 2), 180–183.
24. Shahmatova, О. А. (2001). Aktivnost' antioksidantnoj sistemy lichinok ryb kak pokazatel' kachestva morskoj sredy. Jekologija morja, 59, 48–50.
25. Korobejnikova, C.N. (1989). Modifikacija opredelenija produktov POL vreakcii s TBK. Labor. delo, 7, 8–9.
26. Mironchik, V.V. (1984). Sposob opredelenija gidroperekisej lipidov v biologicheskih tkanjah. SSSR, МКUI, 33/48.
27. Stal'naja, I. D. (1997). Metodopredelenija dienovoj kon'jugacii nenasyshhennyh zhirnyh kislot. Мoskva: Medicina.
28. Mishchuk, O. (2008). Biokhimichni markery prisnovodnoho dvostulkovoho molyuska Anodontacygnea (Unionidae) za umov pereselennya. VisnykL'viv. un-tu. Seriyabiolohichna, 47, 96–103.