pdf35

Ribogospod. nauka Ukr., 2025; 3(73): 357-368
DOI: https://doi.org/10.61976/fsu2025.03.357
UDC 639.517:636.089:019.912“1868”

Immunology, disease and pathology of the Australian red-claw crayfish (Cherax quadricarinatus Von Martens, 1868). Thematic bibliography

N. Hrynevych, This email address is being protected from spambots. You need JavaScript enabled to view it. ,ORCID ID 0000-0001-7430-9498, Bila Tserkva National Agrarian University, Bila Tserkva
A. Sliusarenko, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-1896-8939, Bila Tserkva National Agrarian University, Bila Tserkva
O. Khomiak, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0003-3010-6757, Bila Tserkva National Agrarian University, Bila Tserkva
V. Zharchynska, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-5823-9095, Bila Tserkva National Agrarian University, Bila Tserkva

Purpose. Systematisation and synthesis of scientific sources on immunological features, pathologies and diseases of the Australian red-claw crayfish Cherax quadricarinatus.

Methodology. The methodology for compiling the thematic bibliography was based on a thorough search, systematisation and analysis of scientific sources.

Findings. As a result of this work, a thematic bibliography on the immunology, pathologies and diseases of Cherax quadricarinatus was compiled.The bibliography contains 59 publications, placed in alphabetical order and described in accordance with the requirements of the HAC, in accordance with DSTU 8302:2015 «Information and documentation. Bibliographic reference. General provisions and rules of drafting», taking into account the amendments (UKND code 01.140.40).

Practical Value. The list can be useful for students, teachers and researchers to access relevant publications for use in the educational process and research.

Keywords: Cherax quadricarinatus, aquaculture, immunology, diseases, prevention, treatment.

REFERENCES

  1. Chang-Xi, H., Jian-Bo, Z., Zhang, Y., Shi-Li, L., Wen-Ping, J., Mei-Li, C., Shun C., Fei L., & Yong-Yi, J. (2024). Genome-wide identification of NOD-like receptor genes in redclaw crayfish (Cherax quadricarinatus) and their responses to DIV1 infection. Aquaculture Reports,35, 102009. https://doi.org/10.1016/j.aqrep.2024.102009.
  2. Chen, D., & Wang, H. (2022). Redclaw crayfish (Cherax quadricarinatus) responds to Vibrio parahaemolyticus infection by activating toll and immune deficiency signaling pathways and transcription of associated immune response genes. Fish & Shellfish Immunology,127, 611-622. https://doi.org/10.1016/j.fsi.2022.06.069.
  3. Chen, D., Guo, L., Yi, C., Wang, S., Ru, Y., & Wang, H. (2021). Hepatopancreatic transcriptome analysis and humoral immune factor assays in red claw crayfish (Cherax quadricarinatus) provide insight into innate immunomodulation under Vibrio parahaemolyticus infection.Ecotoxicology and environmental safety, 217, 112266. https://doi.org/10.1016/j.ecoenv.2021.112266.
  4. Chen, D., Wang, C., Guo, L., Mo, W., Xin, Y., Cao, H., Mu, C., Zeng, Y., & Wang, H. (2022). A comprehensive analysis based on histopathology, metabolomics and transcriptomics reveals molecular regulatory mechanisms of the red claw crayfish (Cherax quadricarinatus) in response to acute hepatopancreatic necrosis disease (AHPND). Aquaculture,555, 738225. https://doi.org/10.1016/j.aquaculture.2022.738225.
  5. Chen, D., Wang, Z., Cao, S., Lu, J., Liu, C., Yang, L., Du, X., Wang, H., & Li, Y. (2023). Molecular characterization and functional analysis of interferon regulatory factor-4 in the red claw crayfish (Cherax quadricarinatus). Aquaculture Reports, 28, 101456. https://doi.org/10.1016/j.aqrep.2022.101456.
  6. Chen, X. X., Li, Y. Y., Chang, X. J., Xie, X. L., Liang, Y. T., Wang, K. J., Zheng W-Y., & Liu, H. P. (2018). A CqFerritin protein inhibits white spot syndrome virus infection via regulating iron ions in red claw crayfish Cherax quadricarinatus. Developmental and Comparative Immunology, 82, 104-112. https://doi.org/10.1016/j.dci.2018.01.008.
  7. Davidovich, N., Fiocchi, E., Basso, A., Budai, J., Montesi, F., & Pretto, T. (2022). An outbreak of crayfish rickettsiosis caused by Coxiella cheraxi in redclaw crayfish (Cherax quadricarinatus) imported to Israel from Australia. Transboundary and emerging diseases,69(2), 204-212. https://doi.org/10.1111/tbed.14375.
  8. Davidovich, N., Pretto, T., Blum, S. E., Balder, Z., Grossman, R., Kaidar-Shwartz, H., Dveyrin, Z., & Rorman, E. (2019). Mycobacterium gordonae infecting redclaw crayfish Cherax quadricarinatus. Diseases of Aquatic Organisms,135, 169-174. https://doi.org/10.3354/dao03392.
  9. Gao, R. L., Liu, L. K., Guo, L. M., Wang, K. J., & Liu, H. P. (2021). CqPP2A inhibits white spot syndrome virus infection by up-regulating antimicrobial substances expression in red claw crayfish Cherax quadricarinatus. Developmental & Comparative Immunology,116, 103913. https://doi.org/10.1016/j.dci.2020.103913.
  10. Gao, Y., Liu, L. K., Wang, K. J., & Liu, H. P. (2020). A negative elongation factor E inhibits white spot syndrome virus replication by suppressing promoter activity of the viral immediate early genes in red claw crayfish Cherax quadricarinatus. Developmental and comparative immunology,107, 103665. https://doi.org/10.1016/j.dci.2020.103665.
  11. Gong, J., Pan, X., Zhou, X., & Zhu, F. (2022). Dietary glycerol monolaurate protects Cherax quadricarinatus against white spot syndrome virus infection. Fish & Shellfish Immunology,131, 1085-1091. https://doi.org/10.1016/j.fsi.2022.11.014.
  12. Gong, J., Pan, X., Zhou, X., & Zhu, F. (2023). Dietary quercetin protects Cherax quadricarinatus against white spot syndrome virus infection. Journal of Invertebrate Pathology,198, 107931. https://doi.org/10.1016/j.jip.2023.107931.
  13. Guo, L., Zhou, M., Chen, D., Yi, C., Sun, B., Wang, S., Ru, Y., Chen, H., & Wang, H. (2021). A new insight to characterize immunomodulation based on hepatopancreatic transcriptome and humoral immune factor analysis of the Cherax quadricarinatus infected with Aeromonas veronii.Ecotoxicology and environmental safety, 219, 112347. https://doi.org/10.1016/j.ecoenv.2021.112347.
  14. Hayakijkosol, O., Owens, L., & Picard, J. (2017). Case report of bacterial infections in a redclaw crayfish (Cherax quadricarinatus) hatchery. Aquaculture, 475, 1-7. https://doi.org/10.1016/j.aquaculture.2017.03.038.
  15. Jaroenram, W., Owens, L., Hayakijkosol, O., & Elliman, J. (2021). Natural, in ovo, vertical transmission of the RNA viruses, Chequa iflavirus and Athtab bunyavirus, but not Cherax reovirus in redclaw crayfish (Cherax quadricarinatus). Aquaculture, 534, 736285. https://doi.org/10.1016/j.aquaculture.2020.736285.
  16. Li, D-li., Chang, X-jiao., Xie, X-lu., Zheng, S-cheng., Zhang, Q-xia., Jia, S-ao., Wang, K-jian., & Liu, H-peng. (2018). A thymosin repeated protein1 reduces white spot syndrome virus replication in red claw crayfish Cherax quadricarinatus. Developmental and Comparative Immunology,84, 109-116. https://doi.org/10.1016/j.dci.2018.02.006.
  17. Li, F., Xu, L., & Yang, F. (2017). Genomic characterization of a novel iridovirus from redclaw crayfish Cherax quadricarinatus: evidence for a new genus within the family Iridoviridae. Journal of General Virology,98(10), 2589-2595. https://doi.org/10.1099/jgv.0.000904.
  18. Li, Y. Y., Xie, X. L., Ma, X. Y., & Liu, H. P. (2019). Identification of a CqCaspase gene with antiviral activity from red claw crayfish Cherax quadricarinatus. Developmental and Comparative Immunology,91, 101-107. https://doi.org/10.1016/j.dci.2018.10.012.
  19. Liao, X., He, J., & Li, C. (2022). Decapod iridescent virus 1: An emerging viral pathogen in aquaculture. Reviews in Aquaculture, 14(4), 1779-1789. https://doi.org/10.1111/raq.12672.
  20. Lim, Y. T., Yong, A. S. K., Lim, L. S., Azad, S. A., Shah, A. S. M., & Lal, T. M. (2020). Characterization and identification of bacteriocin-like substances producing lactic acid bacteria from the intestine of freshwater crayfish, Cherax quadricarinatus. International Journal of Aquatic Science,11(1), 52-60.
  21. Lin, W., Guo, G., Zou, C., Shi, H., & Ruan, L. (2020). Large–scale screening of molecules involved in virus–host interaction by specific compounds in Cherax quadricarinatus hematopoietic tissue cells. Aquaculture,527, 735435. https://doi.org/10.1016/j.aquaculture.2020.735435.
  22. Liu, L. K., Chen, X. X., Gao, R. L., Wang, K. J., Zheng, W. Y., & Liu, H. P. (2020). A cytokine receptor domeless promotes white spot syndrome virus infection via JAK/STAT signaling pathway in red claw crayfish Cherax quadricarinatus. Developmental and Comparative Immunology,111, 103749. https://doi.org/10.1016/j.dci.2020.103749.
  23. Liu, L., Li, W., Gao, Y., Chen, R., Xie, X., Hong, H., Wang, K., & Liu, H. (2018). A laminin-receptor-like protein regulates white spot syndrome virus infection by binding to the viral envelope protein VP28 in red claw crayfish Cherax quadricarinatus. Developmental & Comparative Immunology,79, 186-194. https://doi.org/10.1016/j.dci.2017.10.014.
  24. Liu, L-ke., Gao, Y., Gao, R-lin., Li, D-li., Zhang, Q-xia., Wang, K-jian., & Liu, H-peng. (2020). A barrier-to-autointegration factor promotes white spot syndrome virus infection in a crustacean Cherax quadricarinatus. Fish & Shellfish Immunology, 105, 244-252. https://doi.org/10.1016/j.fsi.2020.07.031.
  25. Liu, S., Jiang, T., Dai, L., & Cong, Y. (2023). Identification of an AnnexinB9 involve in white spot syndrome virus infection in red claw crayfish Cherax quadricarinatus. Molecular Immunology,162, 21-29. https://doi.org/10.1016/j.molimm.2023.08.003.
  26. Liu, Z., Zheng, J., Li, H., Fang, K., Wang, S., He, J., Zhou, D., Weng, S., Chi, M., Gu, Z., He, J., Li, F., & Wang, M. (2024). Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics,25, 746. https://doi.org/10.1186/s12864-024-10673-9.
  27. Lu Y-P., Zhang X-X., Zheng P-H., Li J-T., Li J-J., Li T., Wang X., Wang D-M., Xian J-A., Zhang Z-L., & Wang A-L. (2023). Effects of microcystin-LR on behavior, histopathology, oxidative stress, non-specific immunity and gene expression of red claw crayfish (Cherax quadricarinatus). Aquaculture Reports, 33, 101805. https://doi.org/10.1016/j.aqrep.2023.101805.
  28. Lu, Y. P., Zhang, X. X., Zheng, P. H., Zhang, Z. L., Li, J. T., Wang, D. M., Xian J-A., Wang A. L., & Wang, L. (2021). Effects of air exposure on survival, histological structure, non-specific immunity and gene expression of red claw crayfish (Cherax quadricarinatus). Aquaculture Reports,21, 100898. https://doi.org/10.1016/j.aqrep.2021.100898.
  29. Lu, Y. P., Zheng, P. H., Xu, J. R., Cao, Y. L., Li, J. T., Hao, C. G., Zhang, Z-L., Xian, J-A., Zhang, X-X., & Wang, A. L. (2023). Effects of dietary Eucommia ulmoides leaf extract on growth, muscle composition, hepatopancreas histology, immune responses and microcystin-LR resistance of juvenile red claw crayfish (Cherax quadricarinatus). Fishes,8(1), 20. https://doi.org/10.3390/fishes8010020.
  30. Lu, Y. P., Zheng, P. H., Zhang, X. X., Wang, L., Li, J. T., Zhang, Z. L., Xu, J. R., Cao, Y. L., Xian, J. A., Wang, A. L., & Wang, D. M. (2021). Effects of dietary trehalose on growth, trehalose content, non-specific immunity, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). Fish & Shellfish immunology, 119, 524-532. https://doi.org/10.1016/j.fsi.2021.10.043.
  31. Lu, Y. P., Zheng, P. H., Zhang, Z. L., Li, J. T., Li, J. J., Li, T., Wang, X., Xu, J-R., Wang, D. M., Xian, J-A., & Zhang, X. X. (2023). Effects of dietary Radix bupleuri root extract on the growth, muscle composition, histology, immune responses and microcystin-LR stress resistance of juvenile red claw crayfish (Cherax quadricarinatus). Aquaculture Reports, 33, 101822. https://doi.org/10.1016/j.aqrep.2023.101822.
  32. Meng, C., Liu, L.-K., Li, D.-L., Gao, R.-L., Fan, W.-W., Wang, K.-J., Wang, H.-C., & Liu, H.-P. (2020). White spot syndrome virus benefits from endosomal trafficking, substantially facilitated by a valosin-containing protein, to escape autophagic elimination and propagate in the crustacean Cherax quadricarinatus. Journal of Virology,94(24), 31. https://doi.org/10.1128/jvi.01570-20.
  33. Mojžišová, M., Mrugała, A., Kozubíková-Balcarová, E., Vlach, P., Svobodová, J., Kouba, A., & Petrusek, A. (2020) Crayfish plague in Czechia: Outbreaks from novel sources and testing for chronic infections. Journal of Invertebrate Pathology,173, 107390. https://doi.org/10.1016/j.jip.2020.107390.
  34. Nambiar, G., Owens, L., & Elliman, J. (2023). Cherax quadricarinatus resistant to Chequa iflavirus: a pilot study. Microorganisms,11(3), 578. https://doi.org/10.3390/microorganisms11030578.
  35. Ng, T. H., Kumar, R., Apitanyasai, K., He, S. T., Chiu, S. P., & Wang, H. C. (2019). Selective expression of a “correct cloud” of Dscam in crayfish survivors after second exposure to the same pathogen. Fish & Shellfish Immunology, 92, 430-437. https://doi.org/10.1016/j.fsi.2019.06.023.
  36. Ni, J. H., Tong, Q. Q., Zhang, M. M., Cao, X., Xu, S. L., Wang, D. L., & Zhao, Y. L. (2019). Effect of white spot syndrome virus on the activity of immune-related enzymes in the red claw crayfish (Cherax quadricarinatus). Iranian Journal of Fisheries Sciences, 18(4), 588-604. https://doi.org/10.22092/ijfs.2018.117005.
  37. Pereyra, M. A., Vivanco-Rojas, O., Sánchez-Salgado, J. L., Alpuche Osorno, J. J., Agundis, C., & Zenteno, E. (2020). Identification of a mannose-binding lectin-like protein recognized by the anti-CD25 antibody in haemocytes from Cherax quadricarinatus. Aquaculture Research,51(8), 3119-3128. https://doi.org/10.1111/are.14647.
  38. Powers, Q. M., Aranguren, L. F., Fitzsimmons, K. M., McLain, J. E., & Dhar, A. K. (2021). Crayfish (Cherax quadricarinatus) susceptibility to acute hepatopancreatic necrosis disease (AHPND). Journal of Invertebrate Pathology,186, 107554. https://doi.org/10.1016/j.jip.2021.107554.
  39. Sakuna, K., Elliman, J., & Owens, L. (2017). Discovery of a novel Picornavirales, Chequa iflavirus, from stressed redclaw crayfish (Cherax quadricarinatus) from farms in northern Queensland, Australia. Virus Research,238, 148-155. https://doi.org/10.1016/j.virusres.2017.06.021.
  40. Sakuna, K., Elliman, J., & Owens, L. (2018). Therapeutic trials against pre-existing Chequa iflavirus in redclaw crayfish (Cherax quadricarinatus). Aquaculture,492, 9-14. https://doi.org/10.1016/j.aquaculture.2018.03.029.
  41. Sakuna, K., Elliman, J., Tzamouzaki, A., & Owens, L. (2018). A novel virus (order Bunyavirales) from stressed redclaw crayfish (Cherax quadricarinatus) from farms in northern Australia. Virus Research, 250, 7-12. https://doi.org/10.1016/j.virusres.2018.03.012.
  42. Shi, X., Jia, Y., Zhang, Z., Wu, W., Wu, Z., Chi, M., Zhao Q., & Li, E. (2023). The effects of Chinese herbal feed additives on physiological health and detoxification ability in the red claw crayfish, Cherax quadricarinatus, and evaluation of their safety. Aquaculture,569, 739394. https://doi.org/10.1016/j.aquaculture.2023.739394.
  43. Syahidah, D. & Owens, L. (2020). Histopathology of mixed infections in redclaw crayfish (Cherax quadricarinatus) tissues. Journal of Fisheries and Marine Research, 4(2), 207-213. https://doi.org/10.21776/ub.jfmr.2020.004.02.4.
  44. Tarjono, T., & Patria, M. P. (2019). Movement patterns of agonistic behaviour of crayfish Cherax quadricarinatus (Von Martens, 1868). Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati,15(3), 459-468. https://doi.org/10.24002/biota.v15i3.2604.
  45. Tassakka, A. C. M. A. R., Seniati, Ramadhani, S., Aslamyah, S., & Nursida, N. F. (2024). Evaluation of CpG-Oligodeoxynucleotides as immunostimulants and protecting agents against Aeromonas hydrophila in freshwater lobster (Cherax quadricarinatus). Bulletin of the European Association of Fish Pathologists,44(1), 13. https://doi.org/10.48045/001c.94281.
  46. Victor, S. S., & Pahirulzaman, K. A. K. (2020). Molecular identification of fungi isolated from infected redclaw crayfish, Cherax quadricarinatus. IOP Conference Series: Earth and Environmental Science,596, 012092. https://doi.org/10.1088/1755-1315/596/1/012092.
  47. Wang, Q., Huang, C., Liu, K., Lu, M., Dan, S.F., Xu, Y., Xu, Y., Zhu P., & Pan, H. (2020). Cloning and expression of three heat shock protein genes in the gills of Cherax quadricarinatus responding to bacterial challenge. Microbial Pathogenesis,142, 104043. https://doi.org/10.1016/j.micpath.2020.104043.
  48. Wang, Q., Xu, Y., Xiao, C., & Zhu, F. (2023). The effect of white spot syndrome virus (WSSV) envelope protein VP28 on innate immunity and resistance to white spot syndrome virus in Cherax quadricarinatus. Fish and Shellfish Immunology, 137, 108795. https://doi.org/10.1016/j.fsi.2023.108795.
  49. Wentao, Z., Wen, L., Yunlong, Z., Danli, W., Zhongxiang, M., & Getao, S. (2017). Ultrastructural and immunocytochemical analysis of circulating hemocytes from Cherax quadricarinatus (Von Martens, 1868). Indian Journal of Animal Research, 51(1), 129-134. https://doi.org/10.18805/ijar.v0iOF.6823.
  50. Xie, X. L., Chang, X. J., Gao, Y., Li, D. L., Liu, L. K., Liu, M. J., Wang, K. J., & Liu, H. P. (2018). An Ns1abp-like gene promotes white spot syndrome virus infection by interacting with the viral envelope protein VP28 in red claw crayfish Cherax quadricarinatus. Developmental and Comparative Immunology,84, 264-272. https://doi.org/10.1016/j.dci.2018.03.001.
  51. Yang, H., Wei, X., Wang, R., Zeng, L., Yang, Y., Huang, G., Shafique, L., Ma, H., Min Lv, Ruan, Z., Naz, H., Lin, Y., Huang, L., & Chen, T. (2020). Transcriptomics of Cherax quadricarinatus hepatopancreas during infection with Decapod iridescent virus 1 (DIV1). Fish & Shellfish Immunology,98, 832-842. https://doi.org/10.1016/j.fsi.2019.11.041.
  52. Zhang, Q., Lin, Y., Zhang, T., Wu, Y., Fang, P., Wang, S., Wu, Z., Hao, L., & Li, A. (2021). Etiological characteristics of “tail blister disease” of Australian redclaw crayfish (Cherax quadricarinatus). Journal of Invertebrate Pathology, 184, 107643. https://doi.org/10.1016/j.jip.2021.107643.
  53. Zhang, Y., Zheng, J., Li, F., Ge, C., & Zhang, H. (2023). MicroRNA transcriptome analysis for elucidating the immune mechanism of the redclaw crayfish Cherax quadricarinatus under Decapod iridescent virus 1 infection. Fish & Shellfish Immunology,141, 109026. https://doi.org/10.1016/j.fsi.2023.109026.
  54. Zhang, Z. L., Li, J. J., Xing, S. W., Lu, Y. P., Zheng, P. H., Li, J. T., Hao, C-G., Xu, J-R., Xian, J-A., Zhang, L-M., & Zhang, X-X. (2024). A newly isolated strain of Bacillus subtilis W2Z exhibited probiotic effects on juvenile red claw crayfish, Cherax quadricarinatus. Aquaculture,585, 740700. https://doi.org/10.1016/j.aquaculture.2024.740700.
  55. Zhang, Z. L., Meng, Y. Q., Li, J. J., Zhang, X. X., Li, J. T., Xu, J. R., Zheng P-H., Xian J-A., & Lu, Y. P. (2024). Effects of antimicrobial peptides from dietary Hermetia illucens larvae on the growth, immunity, gene expression, intestinal microbiota and resistance to Aeromonas hydrophila of juvenile red claw crayfish (Cherax quadricarinatus). Fish & Shellfish Immunology,147, 109437. https://doi.org/10.1016/j.fsi.2024.109437.
  56. Zheng, J., Jia, Y., Li, F., Chi, M., Cheng, S., Liu, S., Jiang, W., & Liu, Y. (2023). Changes in the gene expression and gut microbiome to the infection of decapod iridescent virus 1 in Cherax quadricarinatus. Fish & Shellfish immunology,132, 108451. https://doi.org/10.1016/j.fsi.2022.108451.
  57. Zheng, Q., Wang, W., Zhao, F., Lin, S., & Chen, J. (2023). Identification and characterization of an envelope protein 168L in Cherax quadricarinatus iridovirus (CQIV). Virus Research,323, 198967. https://doi.org/10.1016/j.virusres.2022.198967.
  58. Zhou, X., Gong, J., Zhuang, Y., & Zhu, F. (2022). Coumarin protects Cherax quadricarinatus (red claw crayfish) against white spot syndrome virus infection. Fish and Shellfish Immunology,127, 74-81. https://doi.org/10.1016/j.fsi.2022.06.005.
  59. Zuo, D., Liu, X., Zhang, Y., & Ma, C. (2022). Effects of vitamin C on haemolymph activity and haemocyte structure of Cherax quadricarinatus after white spot syndrome virus infection. Aquaculture Research,53(5), 1896-1908. https://doi.org/10.1111/are.15717.