pdf35

Ribogospod. nauka Ukr., 2025; 3(73): 277-297
DOI: https://doi.org/10.61976/fsu2025.03.277
UDC 639.31:614.9:547.495.9:547.913

Development of new preparations based on essential oils and polymeric guanidine derivatives for the prevention of bacterial infections and mycotic pathogens in cyprinids

A. Lysytsya, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0001-9028-8412, Epizootology Research Station of the National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Rivne
S. Katyukha, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID0009-0005-1216-0401, Epizootology Research Station of the National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Rivne
P. Kryvoshyya, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-8671-6442, Epizootology Research Station of the National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Rivne
N. Matviienko, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0001-8849-0099, Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
O. Oliynyk, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0009-0004-6557-8353, Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
I. Vozniuk, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0009-0002-2466-6248, Rivne Regional State Laboratory of the State Service of Ukraine on Food Safety and Consumer Protection, Rivne

Purpose. To select the optimal composition of a preparation based on essential oils and polymeric guanidine derivatives for the prevention of bacterial infections and mycoses, particularly saprolegniosis in cyprinids.

Methodology. The study material included Daphnia magna, and clinically healthy Cyprinus carpio (Linnaeus, 1758). Maximum tolerated concentration (MTC), lethal concentration (CL100), and median lethal concentration (CL50) were determined on these test organisms. Compositions of essential oils with polyhexamethyleneguanidine (PHMG), zinc oxide nanoparticles, and antibiotics were tested. To determine the antibacterial activity of the experimental compositions, strains Aeromonas hydrophila, A. salmonicida, and Pseudomonas fluorescens were used, and to determine the antifungal activity, strains Saprolegnia spp. and S. parasitica were used.

Findings. The CL100/24, CL100/48, and MTC values obtained from Daphnia magna and Cyprinus carpio for both individual ingredients and about 50 of their combinations enabled the identification of the most promising formulations. Microbiological tests preliminarily determined the most effective combinations. The best antibacterial properties were demonstrated by combinations of PHMG with thyme, cinnamon, and oregano essential oils, as well as PHMG with colloidal silver (Ag-colloid). Tests on Saprolegnia parasitica and Saprolegnia spp. showed that the most effective combination was PHMG with oregano essential oil.

Originality. Toxicity parameters for aquatic organisms were established for compositions based on essential oils, polymeric guanidine derivatives, and zinc oxide nanoparticles, along with their antimicrobial and antifungal properties. The optimal composition, ingredient concentrations, and treatment conditions were determined.

Practical Value. The results can serve as a foundation for the development of new environmentally safe antibacterial and antifungal agents for their use in aquaculture.

Keywords: essential oils, polyhexamethylene guanidine, aquatic organisms, antimicrobial agents, antifungal agents.

REFERENCES

  1. FAO. (2022). The state of world fisheries and aquaculture 2022: Towards blue transformation. Rome: FAO. https://doi.org/10.4060/cc0461en.
  2. Hadzevych, O. V., Paliy, A. P., Stehnii, B. T., Stehnii, A. B., Chechet, О. N., Hadzevych, D. V., Paliy, A. P., Pavlichenko, O. V., Severyn, R. V., Petrov, R. V., & Livoshchenko, L. P. (2023). Antibiotic resistance of microbiotas of fishery enterprises hydro ecosystems. Mikrobiolohichnyi Zhurnal, 84(4), 77-87. https://doi.org/10.15407/microbiolj84.04.077.
  3. Jin, M., Liu, L., Wang, D. N., Yang, D., Liu, W. L., Yin, J., Yang, Z. W., Wang, H. R., Qiu, Z. G., Shen, Z. Q., Shi, D. Y., Li, H. B., Guo, J. H., & Li, J. W. (2020). Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. The ISME Journal, 14(7), 1847-1856. https://doi.org/10.1038/s41396-020-0656-9.
  4. Zhao, J.-L., Liu, Y.-S., Liu, W.-R., Jiang, Y.-X., Su, H.-C., Zhang, Q.-Q., Chen, X.-W., Yang, Y.-Y., Chen, J., Liu, S.-S., Pan, C.-G., Huang, G.-Y., & Ying, G.-G. (2015). Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver, and muscle tissues of wild fish from a highly urbanized region. Environmental Pollution, 198, 15-24. https://doi.org/10.1016/j.envpol.2014.12.026.
  5. Shepelevych, V., Berezkina, A., Tretiakova, T., & Matvienko, N. (2023). The problem of contamination of aquatic ecosystems with antibiotics: A review. Ribogospodarska nauka Ukrainy, 1(63), 3-32. https://doi.org/10.15407/fsu2023.01.003.
  6. Baralla, E., Demontis, M. P., Dessi, F., & Varoni, M. V. (2021). An overview of antibiotics as emerging contaminants: Occurrence in bivalves as biomonitoring organisms. Animals, 11, 3239. https://doi.org/10.3390/ani11113239.
  7. Baralla, E., Pasciu, V., Varoni, M. V., Nieddu, M., Demuro, R., & Demontis, M. P. (2021). Bisphenols’ occurrence in bivalves as a sentinel of environmental contamination. Science of the Total Environment, 785, 147263. https://doi.org/10.1016/j.scitotenv.2021.147263.
  8. Zhou, J., Yun, X., Wang, J., Li, Q., & Wang, Y. (2022). A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicology Reports, 9, 534-540. https://doi.org/10.1016/j.toxrep.2022.03.034.
  9. Wang, J., Chu, L., Wojnárovits, L., & Takács, E. (2020). Occurrence and fate of antibiotics, antibiotic-resistant genes (ARGs), and antibiotic-resistant bacteria (ARB) in municipal wastewater treatment plants: An overview. Science of the Total Environment, 744, 140997.
  10. Mello, F. V., Cunha, S. C., Fogaça, F. H. S., Alonso, M. B., Torres, J. P. M., & Fernandes, J. O. (2022). Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. Science of the Total Environment, 803, 149744. https://doi.org/10.1016/j.scitotenv.2021.149744.
  11. Mackie, R. I., Koike, S., Krapac, I., Chee-Sanford, J., Maxwell, S., & Aminov, R. I. (2006). Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Animal Biotechnology, 17(2), 157-176. https://doi.org/10.1080/10495390600956953.
  12. Davydov, O. M., & Temnikhanov, Yu. D. (2004). Bolezni presnovodnykh ryb. Kiev.
  13. Zazharsʹka, N. M., Kutsak, R. S., & Biben, I. A., et al. (2017). Veterynarno-sanitarna ekspertyza. Dnipro.
  14. Sudova, E., Machova, J., Svobodova, Z., & Vesely, T. (2007). Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Veterinary Medicine, 52, 527-539. https://doi.org/10.17221/2027-VETMED.
  15. Lysytsya, A. V., Oliynyk, O. B., Matviyenko, N. M., & Katyukha, S. M. (2024). Mozhlyvosti zastosuvannya v akvakulʹturi novykh protyhrybkovykh kompozytsiy na osnovi efirnykh oliy roslyn. Suchasni problemy ratsionalʹnoho vykorystannya vodnykh bioresursiv: VI Mizhnarodna naukovo-praktychna konferentsiya: mater. Kyiv, 240-242. https://doi.org/10.61976/conf.IF-2024-6.
  16. Özil, Ö., Diler, Ö., & Nazıroğlu, M. (2022). Antifungal activity of some essential oil nanoemulsions against Saprolegniasis in rainbow trout (Oncorhynchus mykiss) eggs. Aquaculture International, 30, 2201-2212. https://doi.org/10.1007/s10499-022-00897-5.
  17. Gholipourkanani, H., Buller, N., & Lymbery, A. (2019). In vitro antibacterial activity of four nano-encapsulated herbal essential oils against three bacterial fish pathogens. Aquaculture Research, 50, 871-875. https://doi.org/10.1111/are.13959.
  18. Anjugam, M., Vaseeharan, B., Iswarya, A., Gobi, N., Divya, M., Thangaraj, M. P., & Elumalai, P. (2018). Effect of β-1,3 glucan binding protein-based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish & Shellfish Immunology, 76, 247-259. https://doi.org/10.1016/j.fsi.2018.03.012.
  19. Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279(1), 71-76. https://doi.org/10.1111/j.1574-6968.2007.01012.x.
  20. Choi, H., Kim, K.-J., & Lee, D. G. (2017). Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biology, 121(1), 53-60. https://doi.org/10.1016/j.funbio.2016.09.001.
  21. Wu, L., Wang, C., Wang, Y., Yu, Y., Zhang, Z., Ma, C., Rong, X., Chen, L., Liao, M., & Yang, Y.  (2025). Bactericidal effect and mechanism of polyhexamethylene biguanide (PHMB) on pathogenic bacteria in marine aquaculture. Biology, 14, 470. https://doi.org/10.3390/biology14050470.
  22. Mansour, A. T., Eldessouki, E. A., Khalil, R. H., Diab, A. M., Selema, T. A. M. A., Younis, N. A., & Abdel-Razek, N. (2023). In vitro and in vivo antifungal and immune stimulant activities of oregano and orange peel essential oils on Fusarium solani infection in whiteleg shrimp. Aquaculture International, 31(4), 1-19. https://doi.org/10.1007/s10499-023-01065-z.
  23. Lysytsya, A. V., Mandyhra, Yu. M., & Boyko, O. P. (2018). Polimerni pokhidni huanidynu, yikh vlastyvosti ta vplyv na biolohichni obʺyekty: monohrafiya. Kherson: Oldi-Plyus.
  24. Chakraborty, B., Pal, N. K., Maiti, P. K., Patra, S. K., & Ray, R. (2014). Action of newer disinfectants on multidrug-resistant bacteria. Journal of Evolution of Medical and Dental Sciences, 3(11), 2797-2813. https://doi.org/10.14260/jemds/2014/2211.
  25. National Standard of Ukraine. Water quality. Determination of acute lethal toxicity of chemicals and water on freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)]. (2003). DSTU 4074-2001. Static method (ISO 7346-1:1996, MOD). Official edition. Kyiv.
  26. Water quality. Determination of pH (ISO 10523:1994, MOD). (2003). DSTU 4077-2001. National Standard of Ukraine. Official edition.
  27. Water quality. Determination of dissolved oxygen. Electrochemical method using a probe (ISO 5814:1990, IDT). (2004). DSTU ISO 5814:2003. National Standard of Ukraine. Official edition. Kyiv.
  28. Test Guideline No. 211 Daphnia magna reproduction test. www.oecd.org. Retrieved from: https://www.oecd.org/content/dam/oecd/en/publications/reports/2012/10/test-no-211-daphnia-magna-reproduction-test_g1g24069/9789264185203-en.pdf.
  29. Vrynchanu, N. O., et al. (2016). Vyvchennya spetsyfichnoyi aktyvnosti antyfunhalʹnykh likarsʹkykh zasobiv: metodychni rekomendatsiyi. Kyiv.
  30. Kotsyumbas, I. Ya., Malik, O. H., & Patereha, I. P., et al. (2006). Doklinichni doslidzhennya veterynarnykh likarsʹkykh zasobiv. Lʹviv.