pdf35

Ribogospod. nauka Ukr., 2025; 3(73): 257-276
DOI: https://doi.org/10.61976/fsu2025.03.257
UDC 597.551.2:616

Pathological changes in the gills of common roach (Rutilus rutilus Linnaeus, 1758) from the Konoplyanka River of the city of Kam’ianske

N. Hudym, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-9636-2465, Oles Honchar Dnipro National University, Dnipro, Ukraine
T. Sharаmok, This email address is being protected from spambots. You need JavaScript enabled to view it. ,  ORCID ID 0000-0003-3523-5283, Oles Honchar Dnipro National University, Dnipro, Ukraine

Purpose. To conduct a comprehensive analysis of the impact of anthropogenic pollution on common roach (Rutilus rutilus) caught in the Konoplyanka River. To study pathological changes in fish gills as an indicator of water quality and to determine the activity of the biochemical marker - glutathione-S-transferase (GST).

Methodology. Material for the study was obtained during 2022–2024 in the Konoplyanka River within 4 sampling sites with varying degrees of anthropogenic load. The object of the study was age-1+ common roach. Histological studies were performed according to generally accepted methods. Gills were obtained by anatomical dissection from freshly caught fish. Determination of glutathione-S-transferase activity by spectrophotometric analysis. The content of heavy metals in fish carcasses was determined by atomic absorption spectrophotometry. The obtained data were processed statistically to confirm the significance of the obtained results.

Findings. The analysis showed that fish from all studied sampling sites of the Konoplyanka River exhibited significant pathological changes in their gills. The most common were: curvature and fusion of lamellae, hyperplasia and desquamation of the respiratory epithelium. These damages were most pronounced in fish at sites where, according to previous studies, high levels of heavy metals and radionuclides were recorded. It was found that the fish caught in the upper part of the river had a significantly higher copper content compared to fish from other sites by 2.8–2.0 times. Glutathione-S-transferase activity was significantly reduced in contaminated areas, indicating depletion of the fish’s defence mechanisms under the effect of toxic stress.

Originality. For the first time, a comprehensive study of histological and biochemical markers about conditions of the common roach from the Konoplyanka River was conducted under the effect of technogenic impact of the industrial zone of the metallurgical and chemical industry.

Practical Value. The feasibility of using such an integrated approach for monitoring aquatic ecosystems. The data obtained can be used to assess the ecological state of the Konoplyanka River water areas and develop effective measures to protect water resources from anthropogenic impact. This is especially true for small rivers, which are often overlooked in monitoring programs.

Keywords: anthropogenic pollution, biomarkers, histopathology, glutathione-S-transferase (GST), heavy metals, tailings ponds.

REFERENCES

  1. Yesipova, N. B., Sharamok, T. S., Skliar, T. V., Marenkov, O. M., Hudym, N. H., & Foroshchuk, V. V. (2023). Hydroecological characteristics of the current state of the Zaporizhzhia (Dnipro) reservoir and its tributaries. Fisheries Science of Ukraine, 4(66), 35-48. https://doi.org/10.61976/fsu2023.04.035.
  2. Stelmakh, V. Yu. (2024). Analysis of the hydrographic network and the modern hydrological regime of the Styr River (2020–2022). Ukrainian Journal of Natural Sciences, 8, 119-130.
  3. Moussa, M., Mohamed, H., & Abdel-Khalek, A. (2022). The antioxidant defense capacities and histological alterations in the livers and gills of two fish species, Oreochromis niloticus and Clarias gariepinus, as indicative signs of the Batts drain pollution. Environmental Science and Pollution Research, 29. https://doi.org/10.1007/s11356-022-20804-y.
  4. Al-Taai, S. A. H. (2025). Seasonal histomorphological study of the gills of common carp (Cyprinus carpio) in the Tigris River, Iraq. Asian Journal of Science and Applied Technology, 14(1), 1-8.
  5. Kozii, O. M. (2025). Gistologichni zminy zyaber sudaka (Sander lucioperca Linnaeus, 1782) v umovakh hipoksii yak naslidku tekhnohennoho navantazhennia, zumovlenoho povnomasshtabnoiu viinoiu. Rybohospodars’ka nauka Ukrainy, 1(71), 121-136. https://doi.org/10.61976/fsu2025.01.121.
  6. Kurchenko, V. O., & Sharamok, T. S. (2017). Osoblyvosti gistologichnoyi struktury zyaber deyakykh koropovykh ryb Zaporiz’koho vodoskhovyshcha. Naukovyi visnyk Chernivets’koho universytetu. Biolohiia (Biolohichni systemy), 9(1), 70-74.
  7. Mashkova, K. A., & Sharamok, T. S. (2023). Gistologichna struktura zyaber karasia sriblyastoho richky Samara (Dnipropetrovs’ka oblast’). Rybohospodars’ka nauka Ukrainy, 3(65), 102-118.
  8. Marinović, Z., Miljanović, B., Urbányi, B., & Lujić, J. (2021). Gill histopathology as a biomarker for discriminating seasonal variations in water quality. Applied Sciences, 11(20), 9504. https://doi.org/10.3390/app11209504.
  9. Pribadi, T., Syahidah, D., Harjanti, S., & Malini, D. (2017). Alteration of Gills and Liver Histological Structure of Cyprinus carpio Exposed to Leachate. Biosaintifika: Journal of Biology & Biology Education, 9, 289-297. https://doi.org/10.15294/BIOSAINTIFIKA.V9I2.8972.
  10. Shruthi, M. T., Lakshmipathi, K., Rakesh, A., & Padmanabha, A. (2022). Histological alteration in gills and liver of common carp (Cyprinus carpio) after fed with antibiotic oxytetracycline. Journal of Experimental Zoology India, 25, 1793-1806.
  11. Mohamed, Fatma A. (2009). Histopatological Sdudies on Tilapia zillii and Solea vulgaris from Lake Qarum, Egypt. World journal of Fish and Marine Sciences, 1 (1), 29-39.
  12. Hadi, A. A., & Alwan, S. F. (2021). Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum. Int. J. of Pharm. & Life Sci. (IJPLS), 3, 2071-2081.
  13. Melnyk, A. P., Vlasova, N. M., & Zakharchenko, I. L. (2011). Rozpodil ta nakopychennia vazhkykh metaliv v orhanakh i tkanynakh promyslovykh vydiv ryb Kakhovs’koho vodoskhovyshcha. Rybohospodarska nauka Ukrainy, 1(15), 74-80.
  14. Javed, M., & Usmani, N. (2014). Assessment of heavy metals (Cu, Ni, Fe, Co, Mn, Cr, Zn) in rivulet water, their accumulations and alterations in hematology of fish Channa punctatus. African Journal of Biotechnology, 13, 492-501. https://doi.org/10.5897/AJB2013.13131.
  15. Sapronova, V. O., Novitskyi, R. O., Kolomiitseva, O. M., & Buleiko, A. A. (2024). The content of heavy metals in water, bottom sediments and fish of water bodies of various purposes in the Dnipropetrovsk region. Fisheries Science of Ukraine, 3(68), 23-38. https://doi.org/10.61976/fsu2024.02.023.
  16. Martínez-Álvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15(1), 75-88. https://doi.org/10.1007/s11160-005-7846-4.
  17. Hamed, R. R., Saleh, N. S., Shokeer, A., Guneidy, R. A., & Abdel-Ghany, S. S. (2016). Glutathione and its related enzymes in the gonad of Nile Tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 2(1), 353-363. https://doi.org/10.1007/s10695-015-0143-9.
  18. Ahmad, I., Oliveira, M., Pacheco, M., & Santos, M. A. (2005). Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without β-naphthoflavone pre-exposure. Chemosphere, 61(2), 267-275. https://doi.org/10.1016/j.chemosphere.2005.01.069.
  19. Elgazzar, A., Ashry, K., & Elsayed, Y. (2014). Physiological and oxidative stress biomarkers in the freshwater Nile Tilapia, Oreochromis niloticus L., exposed to sublethal doses of cadmium. Alexandria Journal of Veterinary Sciences, 40, 29. https://doi.org/10.5455/ajvs.48333.
  20. Zin’kovs’kyi, O. H., Potrokhov, O. S., Khudiash, Yu. M., Vodianits’kyi, O. M., & Kofonov, K. (2023). Plitka (Rutilus rutilus Linnaeus, 1758) yak bioindikator antropohennoho zabrudnennia prisnovodnykh vodoim. Suchasni problemy ratsional’noho vykorystannia vodnykh bioresursiv: V Mizhnar. nauk.-prakt. konf. (8.11-9.11.2023): mater. Kyiv: PRO FORMAT, 190-194.
  21. Kochet, V. M. (2010). Suchasnyi stan ikhtiofauny malykh richok Dnipropetrovskoi oblasti. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu im. V. Hnatiuka. Seriia: Biolohiia. Spets. vyp.: Hidroekolohiia, 2 (43), 280-283.
  22. Hudym, N. H. (2024). Nakopychennia shtuchnykh ta pryrodnykh radionuklidiv v hidrobiontakh r. Konoplianka (m. Kam’ians’ke Dnipropetrovs’ka oblast’). Rybohospodarska nauka Ukrainy, 4(70), 217-237. https://doi.org/10.61976/fsu2024.04.217.
  23. Lavrova, T. V. (2023). Radioekolohichnyi monitorynh maidanchykiv spadshchyny uranovoho vyrobnytstva. Candidate’s thesis. Kyiv.
  24. Dias de Moraes, F., Perri Venturini, F., Rossi, P. A., Marchioni Avilez, I., da Silva de Souza, N. E., & Moraes, G. (2018). Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin based insecticide. Ecotoxicology, 27, 188-197. https://doi.org/10.1007/s10646-017-1884-2.
  25. Omar, W. A., Zaghloul, K. H., Abdel-Khalek, A. A., & Abo-Hegab, S. (2012). Genotoxic effects of metal pollution in two fish species, Oreochromis niloticus and Mugil cephalus, from highly degraded aquatic habitats. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 746(1), 7-14. https://doi.org/10.1016/j.mrgentox.2012.01.013.
  26. Yesipova, N. B., & Hudym, N. H. (2023). Hydroecological monitoring of the Zaporizhia (Dnipro) reservoir. Scientific Collection «InterConf», 149, 271-275.
  27. Tkachenko, Yu. (2020). Prydniprovskyi khimichnyi zavod – uranova spadshchyna Ukrainy. [S. l.]: Bellona Foundation.
  28. Romanenko, V. D. (Ed.). (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv.
  29. Habig, W. H., & Jakoby, W. B. (1981). Assays for differentiation of glutathione S-transferases. Methods Enzymol., 77, 398-405. https://doi.org/10.1016/s0076-6879(81)77053-8.
  30. Zhou, S., Yang, Q., Song, Y., Cheng, B., & Ai, X. (2023). Effect of copper sulphate exposure on the oxidative stress, gill transcriptome and external microbiota of yellow catfish, Pelteobagrus fulvidraco. Antioxidants, 12, 1288. https://doi.org/10.3390/antiox12061288.
  31. Hoseini, S. M., Hedayati, A., Taheri Mirghaed, A., & Ghelichpour, M. (2016). Toxic effects of copper sulfate and copper nanoparticles on minerals, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Experimental and Toxicologic Pathology, 68(9), 493-503. https://doi.org/10.1016/j.etp.2016.08.002
  32. Monteiro, S. M., Mancera, J. M., Fontaínhas-Fernandes, A., & Sousa, M. (2005). Copper induced alterations of biochemical parameters in the gill and plasma of Oreochromis niloticus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 141(4), 375-383. https://doi.org/10.1016/j.cbpc.2005.08.002.
  33. Hudym, N. H., & Sharamok, T. S. (2024). Cytomorphological indicators of common roach (Rutilus rutilus Linnaeus, 1758) erythrocytes in the Konoplyanka River. Ecology and Noospherology, 35(2), 157-164. https://doi.org/10.15421/032424.
  34. Sharamok, T. S., Khromykh, N. O., Yesipova, N. B., Marenkov, O. M., Koptieva, S. D., Korzhenevska, P. O., & Holub, I. V. (2024). Investigation of TNT toxic effects on the functional state of hydrobionts in a model polluted reservoir. Journal of Chemistry and Technologies, 32(3), 518-527.
  35. Kovalenko, Yu. O., Prymachov, M. T., Potrokhov, O. S., & Zin’kovs’kyi, O. H. (2018). Deyaki adaptyvni reaktsii karasia sriblyastoho (Carassius auratus gibelio) za nadmirnoho navantazhennia amoniinym azotom. Rybohospodarska nauka Ukrainy, 2(44), 116-129.