Ribogospod. nauka Ukr., 2025; 3(73): 89-110
DOI: https://doi.org/10.61976/fsu2025.03.089
UDC 639.3.06
Modern approaches to water purification in recirculating aquaculture systems (review)
O. Okhrimenko,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0001-9867-0595, National University of Life and Environmental Sciences of Ukraine, Kyiv
I. Kononenko,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0003-3906-3650, National University of Life and Environmental Sciences of Ukraine, Kyiv
Purpose. Conduct a comprehensive analysis of scientific literature to summarize data on innovative approaches to water purification in recirculating aquaculture systems (RAS). Consider methods of controlling the quality of the aquatic environment, modern systems for monitoring water parameters, as well as advanced technologies for its purification and preparation, which contribute to increasing the efficiency of such systems functioning.
Findings. A review of current scientific publications related to modern approaches to water purification in aquaculture, which directly contribute to increasing the efficiency of commercial product production in recirculating aquaculture systems, is presented. Information from literary sources on the most common methods of monitoring and controlling the quality of the aquatic environment is summarized. The main types of biofilters are described in detail and the principles of their functioning are revealed. Special attention is paid to innovative methods of water treatment, in particular electrooxidation and electrocoagulation. The prospects of integrating the latest environmentally friendly solutions, focused on preserving the natural environment, into water treatment processes for RAS were noted.
Practical Value. This review will be useful for scientists, graduate students, students, government officials, and private entrepreneurs specializing in the cultivation of commercial aquaculture products in recirculating aquaculture systems.
Keywords: recirculating aquaculture systems, water purification, biofiltration, bioreactors, electrooxidation, electrocoagulation.
REFERENCES
- Abeysinghe, K., Weerarathne, A., Colonne, D., & Bellanthudawa, B. (2025). Sustainable development goals (SDGs), climate change, and the development of aquaculture and fisheries industries. Environmental Reviews, 1-24. https://doi.org/10.1139/er-2024-0136.
- Food and Agricultural Organization of the United Nations (FAO). (2016). The state of world fisheries and aquaculture. Rome: FAO.
- Building Blue Food Futures for People and the Planet. (2021). The Report of the Blue Food Assessment. https://doi.org/10.25740/rd224xj7484.
- Kononenko, R. (2013). Vykorystannia ustanovky zamknutoho vodopostachannia pry intensyfikatsii vyrobnytstva ryboproduktsii. Ryboghospodarsjka nauka Ukrajiny, 2(24), 56-65. https://doi.org/10.15407/fsu2013.02.056
- Ahmed, N., & Turchini, G. (2021). Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. Journal of Cleaner Production, 1-14. https://doi.org/10.1016/j.jclepro.2021.126604.
- Anderson, J., & Smith, R. (2023). Optimizing Production Yields in Controlled Environments: The Role of Recirulatory Aquaculture Systems. Sustainable Fisheries Journal, 56-73.
- Balami, S. (2021). Recirculation Aquaculture Systems: Components, Advantages, and Drawbacks. Tropical Agroecosystems, 104-109.
- Li, C., et al. (2022). Biosecurity Measures in Recirculatory Aquaculture: Case Studies and Best Practices. Aquaculture Research, 421-438.
- Honcharova, О. (2024). Fizioloho-biokhimichni parametry orhanizmu ryb za umov udoskonalennia pidroshchennia v retsyrkuliatsiinykh systemakh v umovakh pivdnia Ukrainy. Vodni bioresursy ta akvakultura, 1, 5-19. https://doi.org/10.32782/wba.2024.1.1.
- Mongirdas, V., Zibiene, G., & Žibas, A. (2017). Waste and its characterization in closed recirculating aquaculture systems – a review. Journal of Water Security, 3. https://doi.org/10.15544/jws.2017.002.
- Martins, A., et al. (2023). Advancements in Water Conservation Through Recirculatory Aquaculture Systems. Aquaculture Today, 112-128.
- Aich, N., Nama, S., Biswal, A., & Paul, T. (2020). A review on recirculating aquaculture systems: challenges and opportunities for sustainable aquaculture. Innovative Farming, 17-24.
- Shruti, G., Pavlos, M., & Ingrid, H., et al. (2024). Recent Developments in Recirculating Aquaculture Systems: A Review. Aquaculture Research. https://doi.org/10.1155/are/6096671.
- Tosun, D. (2024). Recirculating Aquaculture Systems in Aquaculture. https://doi.org/10.26650/B/LS32LS24.2024.005.013.
- Bregnballe, J. (2022). A guide to recirculation aquaculture – An introduction to the new environmentally friendly and highly productive closed fish farming systems. Rome: FAO and Eurofish International Organisation. https://doi.org/10.4060/cc2390en.
- Anurag, S., Avdhesh, K., Ujjwala, U., & Yogesh, P. (2021). Recirculatory aquaculture system (RAS), 1-5.
- Hrynevych, N., Khomiak, О., Prysiazhniuk, N., & Mykhalskyi, О. (2019). Analiz hidrotekhnolohichnoi skladovoi industrialnykh akvaferm za zamknutoho vodopostachannia. Vodni bioresursy ta akvakultura, 2, 59–76.
- Andrei, S., Pop, A., Gageanu, I., Laza, E., Cujbescu, D., Voicea, I., & Vladut, V. (2016). Aspects on mechanical filtering in aquaculture systems. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 296-305.
- McMillan, J. D., Wheaton, F. W., Hochheimer, J. N., & Soares, J. (2003). Pumping effect on particle sizes in a recirculating aquaculture system. Aquacultural Engineering, 53-59.
- Ni, Q., & Zhang, Y. (2007). Suspended solids removal technology in recirculating aquaculture systems. Fishery Modernization, 7-10.
- Xiao, R., Wei, Y., An, D., Li, D., Ta, X., Wu, Y., & Ren, Q. (2019). A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. Reviews in Aquaculture, 863-895.
- Murray, F., Bostock, J., & Fletcher, D. (2014). Review of recirculation aquaculture system technologies and their commercial application. Final report.
- Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., & Albertsen, M., et al. (2015). Complete nitrification by Nitrospira bacteria. Nature, 504-509.
- Hüpeden, J., Wegen, S., Off, S., Lücker, S., Bedarf, Y., & Daims, H., et al. (2016). Relative abundance of Nitrotoga in a biofilter of a cold freshwater aquaculture plant appears to be stimulated by a slightly acidic pH-value. Appl. Environ. Microbiol, 1838-1845.
- Sharylo, D. Yu., Kovalenko, V. O., & Kovalenko B. Yu. (2019). Peculiarities of use of biofilters with different types of fillers at the stage of biological balance establishment in recirculating aquaculture systems. Animal science and food technology, 10(2), 61-73. htps://doi.org/10.31548/animal2019.02.061.
- Auffret, M., Yergeau, É., Pilote, A., Proulx, É., Proulx, D., Greer, C. W., Vandenberg, G., & Villemur, R. (2013). Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems. FEMS Microbiol. Ecol, 235-247.
- Wafula, A., Gichana, Z., Onchieku, J., Chepkirui, M., & Orina, S. (2023). Opportunities and Challenges of Alternative Local Biofilter Media in Recirculating Aquaculture Systems. Journal of Aquatic and Terrestrial Ecosystems, 73-81.
- Shitu, A., et al. (2021). Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2021.04.006.
- Ghosh, A., et al. (2025). Integrated multi-trophic aquaculture (IMTA): enhancing growth, production, immunological responses, and environmental management in aquaculture. Aquaculture International, 33. https://doi.org/10.1007/s10499-025-02021-9.
- Vishal, K., Jitesh, S., Shalu, S., & Supreet, K. (2025). Biofloc Technology in Fish Farming, 348-360.
- Ramli, N. M., Verreth, J. A. J., Yusoff, F. M., Nurulhuda, K., Nagao, N., & Verdegem, M. C. (2020). Integration of algae to improve nitrogenous waste management in recirculating aquaculture systems: A review. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.01004.
- Choi, H. J., Lee, A. H., & Lee, S. M. (2012). Comparison between a moving bed bioreactor and a fixed bed bioreactor for biological phosphate removal and denitrification. Water Science & Technology, 1834-1838.
- Anurag, S., Avdhesh, K., Yogesh, P. (2021). Biofloc technology: an emerging avenue in aquaculture, 1, 19-23.
- McCusker, S., Bolton-Warberg, M., Davies, S., Valente, C., Johnson, M., Cooney, R., & Wan, A. (2023). Biofloc technology as part of a sustainable aquaculture system: A review on the status and innovations for its expansion. Aquaculture, Fish and Fisheries, 3. https://doi.org/10.1002/aff2.108.
- Qi, W., Skov, P. V., de Jesus Gregersen, K. J., & Pedersen, L.-F. (2022). Estimation of nitrifying and heterotrophic bacterial activity in biofilm formed on RAS biofilter carriers by respirometry. Aquaculture, 738730. https://doi.org/10.1016/j.aquaculture.2022.738730.
- Moreira, F., Boaventura, R., Brillas, E., & Vilar, V. (2016). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202. https://doi.org/10.1016/j.apcatb.2016.08.037.
- Jena, A., Nanda, A., & Mohanty, S. (2025). Treatment of Effluents in Refinery using UASB Reactors. International Journal of Engineering and Science Invention, 83-87. https://doi.org/10.35629/6734-14058387.
- Tiwari, A., Tiwari, A., Kumar, S., Quaff, A., & Tiwari, R. (2025). Performance assessment of a UASB reactor coupled with polymeric filter media for nutrient removal. International Journal on Environmental Sciences, 45-51. https://doi.org/10.53390/IJES.2025.16106.
- Raz, Ben-Asher, Youri, Gendel, & Ori, Lahav. (2023). Electrochemical applications in RAS: A review. Reviews in Aquaculture, 1-20. https://doi.org/10.1111/raq.12822.
- Еlif, Yakamercan, Ronald, F. Turco, Bilgehan, Nas, Aya, S. Hussain, Ahmet, Aygun, Leland, Meador, & Halis, Simsek. (2024). Optimizing electrochemical methods for fish wastewater treatment in recirculating aquaculture systems. Journal of Water Process Engineering, 66. https://doi.org/10.1016/j.jwpe.2024.105891.
- Romero-Soto, I., Di, O., Leyva-Soto, L., Drogui, P., Buelna, G., Díaz, L., Ulloa-Mercado, R., & Gortáres-Moroyoqui, P. (2018). Degradation of Chloramphenicol in Synthetic and Aquaculture Wastewater Using Electrooxidation. Journal of Environment Quality, 47. https://doi.org/10.2134/jeq2017.12.0475.
- Ben-Asher, R., & Lahav, O. (2016). Electrooxidation for simultaneous ammonia control and disinfection in seawater recirculating aquaculture systems. Aquacultural Engineering, 72. https://doi.org/10.1016/j.aquaeng.2016.05.002.
- Yakamercan, E., Turco, R., Nas, B., Hussain, A., Aygun, A., Meador, L., & Simsek, H. (2024). Optimizing electrochemical methods for fish wastewater treatment in recirculating aquaculture systems. Journal of Water Process Engineering, 66, 105891. https://doi.org/10.1016/j.jwpe.2024.105891.
- Gao, Y., Li, Y., Chen, L., Song, J., & Liu, Y. (2021). Ni-Fe oxide-PEDOT modified anode coupled with BAF treating ammonia and nitrite in recirculating seawater of aquaculture system. Bioresource Technology, 342, 126048. https://doi.org/10.1016/j.biortech.2021.126048.
- Visconcin, K., Meneghel, B., Silva, A., & Dias, C. (2024). Nitrogen and phosphorus removal from synthetic aquaculture water through electrocoagulation. Ambiente e Agua - An Interdisciplinary. Journal of Applied Science, 19. https://doi.org/10.4136/ambi-agua.2977.
- Hashim, Dr., Shaw, A., Kot, P., Alkhaddar, R., & Al-Shamma, A. (2020). Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of Cleaner Production, 1-9. https://doi.org/10.1016/j.jclepro.2020.124427.
- Elazzouzi, M., Haboubi, K., & Elyoubi, M. (2019) Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study. Materials Today: Proceedings, 549-555. https://doi.org/10.1016/j.matpr.2019.04.012.
- Jianping, Xu, Tianlong, Qiu, Fudi, Chen, Li, Zhou, Jianming, Sun, & Yishuai, Du. (2021). Construction and application of an electrocoagulation and filtration linkage control system in a recirculating aquaculture system. Journal of Water Process Engineering, 102379. https://doi.org/10.1016/j.jwpe.2021.102379.
- Souza, C., Gonçalves, A., Simeão, A., Calábria, V., Silva, L., Nunes, F., & Brito, M. (2025). Influence of Different Organic Loading Rates on the Stability and Operational Performance of a UASB Reactor Treating Industrial Slaughterhouse Effluent. Revista de Gestão Social e Ambiental, e012416. https://doi.org/10.24857/rgsa.v19n6-042.
- Habchi, S., Pecha, J., Sáneka, L., Karouach, F., & Bari, E. L. (2024). Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective. Journal of Environmental Management, 121920. https://doi.org/10.1016/j.jenvman.2024.121920.
- Casserly, C., & Erijman, L. (2003). Molecular monitoring of microbial diversity in an UASB reactor. International Biodeterioration & Biodegradation, 7-12. https://doi.org/10.1016/S0964-8305(02)00094-X.
- Sharrer, M., Rishel, K., Taylor, A., Vinci, B., & Summerfelt, S. (2010). The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems. Bioresource technology, 6630-41. https://doi.org/ 10.1016/j.biortech.2010.03.101.
- Sharrer, M., Tal, Y., Ferrier, D., Hankins, J., & Summerfelt, S. (2007). Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system. Aquacultural Engineering, 159-176. https://doi.org/ 10.1016/j.aquaeng.2006.10.003.
- Mirzoyan, N., & Gross, A. (2013). Use of UASB reactors for brackish aquaculture sludge digestion under different conditions. Water Research, 2843-2850.