Ribogospod. nauka Ukr., 2025; 2(72): 226-245
DOI: https://doi.org/10.61976/fsu2025.02.226
UDC 591.463.1:597.551.2
The dynamics of spermatogenesis in the European bitterling (Rhodeus amarus Bloch, 1782) from the Zaporizhzhia (Dnipro) Reservoir
M. Yerukh,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0009-0001-4410-0199, Oles Honchar Dnipro National University, Dnipro
O. Marenkov,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0002-3456-2496, Oles Honchar Dnipro National University, Dnipro
Purpose. To investigate the peculiarities of spermatogenesis in the European bitterling (Rhodeus amarus) in the conditions of the Zaporizhzhia (Dnipro) Reservoir, to determine the ratio of gametes of different stages of development and to establish their morphometric parameters.
Methodology. The material for the study were sexually mature males of European bitterling caught in the nearshore areas of the reservoir in the spring-autumn period of 2024. Histological analysis of the testes was performed, sperm smears were prepared, and cytomorphometric measurements of gametes were performed using microscopy and ToupView software. Statistical data processing was carried out in the Statistica 6.0 program.
Findings. It has been found that spermatogenesis in European grayling is asynchronous, continuous in nature. Male testes had simultaneously spermatogonia in the division stage, first and second order spermatocytes, spermatids and spermatozoa (in the ducts). The largest share were first-order spermatocytes (50.68%), while spermatids composed 30.14%. A gradual decrease in cell area with a change in stage was determined: from 12.12±1.07 μm² (spermatocytes of the first order), to 3.04±0.78 μm2 – spermatids. Sperm had a head area of 1.41±0.76 μm². Mean ± standard deviation of the flagellum length to head length ratio was 10.4±1.36.
Originality. For the first time, a quantitative description of the stages of spermatogenesis of the European bitterling in natural conditions of Ukraine was presented using the example of the Zaporizhzhia (Dnipro) Reservoir. Morphological patterns of gamete development have been described and the asynchrony of the gametogenesis process, which is characteristic of intermittent spawning fish, has been confirmed.
Practical Value. The obtained data can be used to assess the reproductive status of European bitterling populations, in monitoring studies of water bodies, and as bioindicator parameters to determine the impact of pollutants on fish fertility.
Keywords: cyprinids, European bitterling, Zaporizhzhia (Dnipro) Reservoir, fish histology, gametogenesis, fish reproduction, spawning.
REFERENCES
- Benzer, S., & Gül, A. (2020). Biological properties of European bitterling Rhodeus amarus (Bloch, 1782) in Dinsiz Stream, Turkey. Acta Aquatica: Aquatic Sciences Journal, 7(2), 60-64. https://doi.org/10.29103/aa.v7i2.2479.
- Anil, A. N., Mehdi, I., Douda, K., Smith, C., & Reichard, M. (2024). Reciprocal transplant experiments demonstrate a dynamic coevolutionary relationship between parasitic mussel larvae and bitterling fishes. Freshwater Biology, 69(11), 1525-1536. https://doi.org/10.1111/fwb.14324.
- Halabowski, D., Reichard, M., Pyrzanowski, K., Zięba, G., Grabowska, J., Smith, C., & Przybylski, M. (2024). The depressed river mussel Pseudanodonta complanata as an occasional host for the European bitterling Rhodeus amarus. Knowledge & Management of Aquatic Ecosystems, (425), 3. https://doi.org/10.1051/kmae/2023025.
- Halabowski, D., Pyrzanowski, K., Zięba, G., Grabowska, J., Przybylski, M., Smith, C., & Reichard, M. (2025). The impact of invasive Sinanodonta woodiana (Bivalvia, Unionidae) and mussel macroparasites on the egg distribution of parasitic bitterling fish in host mussels. Scientific Reports, 15(1), 9417. https://doi.org/10.1038/s41598-025-93717-8.
- Marčić, Z., Prenz, P., Horvatić, S., Mustafić, P., Zanella, D., & Ćaleta, M., et al. (2024). Is bitterling (Rhodeus amarus (Bloch, 1782)) threatened by the invasive unionid species Sinanodonta woodiana (Lea, 1834)?. Biological invasions, 26(10), 3417-3431. https://doi.org/10.1007/s10530-024-03381-8.
- Ecological Risk Screening Summary European Bitterling (Rhodeus amarus). Retrieved from: https://www.fws.gov/sites/default/files/documents/Ecological-Risk-Screening-Summary-European-Bitterling.pdf.
- Reichard, M., Jurajda, P., & Smith, C. (2004). Male-male interference competition decreases spawning rate in the European bitterling (Rhodeus sericeus). Behavioral ecology and Sociobiology, 56, 34-41. https://doi.org/10.1007/s00265-004-0760-2
- Smith, C., Reynolds, J. D., & Sutherland, W. J. (2000). Population consequences of reproductive decisions. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1450), 1327-1334.
- Smith, C., Reichard, M., Jurajda, P., & Przybylski, M. (2004). The reproductive ecology of the European bitterling (Rhodeus sericeus). Journal of Zoology, 262(2), 107-124. https://doi.org/10.1017/S0952836903004497.
- Smith, C., & Reichard, M. (2005). Females solicit sneakers to improve fertilization success in the bitterling fish (Rhodeus sericeus). Proceedings of the Royal Society B: Biological Sciences, 272(1573), 1683-1688.
- Przybylski, M., Reichard, M., Spence, R., & Smith, C. (2007). Spatial distribution of oviposition sites determines variance in the reproductive rate of European bitterling (Rhodeus amarus). Behaviour, 144(11), 1403-1417. https://doi.org/10.1163/156853907782418204
- Ayata, M. K., Karakus, S. Ü., & Gaffaroğlu, M. (2021). Karyology of Rhodeus amarus (Block, 1782) (Teleostei, Acheilognathidae) from Turkey. https://doi.org/10.4194/2459-1831-v5_1_05
- Engler, O., Bodenberger, J., & Weg, N. (2021). Artensteckbrief Bitterling (Rhodeus amarus).
- Smith, C., & Reichard, M. (2013). A sperm competition model for the European bitterling (Rhodeus amarus). Behaviour, 150(14), 1709-1730. https://doi.org/10.1163/1568539x-00003116.
- Kamocki, A., Urbańska, M., Biereżnoj Bazille, U., & Ożgo, M. (2021). Averting coextinction: Successful mussel translocation rescues an endangered population of the European bitterling, Rhodeus amarus. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(7), 1918-1924. https://doi.org/10.1002/aqc.3575.
- Kujawa, R., & Piech, P. (2021). Rearing of bitterling (Rhodeus amarus) larvae and fry under controlled conditions for the restitution of endangered populations. Animals, 11(12), 3534. https://doi.org/10.3390/ani11123534.
- Abramiuk, I. I. (2013). Molod ryb hyrlovoi dilianky r. Vita. Suchasni problemy teoretychnoi ta praktychnoi ikhtiolohii: Mizhnar. ikhtiolohichnoi nauk.-prakt. konf.: mater. Ternopil: Vektor, 20-23.
- İlhan, A., Sari, H. M., & Ekmekçi, B. (2014). Türkiye Iç Sularindaki Aci Balik, Rhodeus amarus (Bloch, 1782) ‘In Boy-Agirlik Iliskisi. Journal of FisheriesSciences.com, 8(3), 181. https://doi.org/10.3153/jfscom.201422.
- Pfeiffer, M., Mildner, M., Günter, C. P., & Leschner, M. (2025). The Asian clam Corbicula fluminea, an accidental host for the European bitterling Rhodeus amarus.Knowledge & Management of Aquatic Ecosystems, 426, 4. https://doi.org/10.1051/kmae/2024026.
- Mills, S. C., & Reynolds, J. D. (2003). Operational sex ratio and alternative reproductive behaviours in the European bitterling, Rhodeus sericeus. Behavioral Ecology and Sociobiology, 54, 98-104. https://doi.org/10.1007/s00265-003-0616-1.
- Smith, C., Spence, R., Bailey, R., & Reichard, M. (2023). Male position in a sexual network reflects mating role and body size. Journal of Vertebrate Biology, 72(22069), 22069-1. https://doi.org/10.25225/jvb.22069.
- Konečná, M., & Reichard, M. (2011). Seasonal dynamics in population characteristics of European bitterling Rhodeus amarus in a small lowland river. Journal of fish biology, 78(1), 227-239. https://doi.org/10.1111/j.1095-8649.2010.02854.x.
- Tarkan, A. S., Gaygusuz, Ö., Gürsoy, Ç., & Acipinar, H. (2005). Life history pattern of an Eurasian Cyprinid, Rhodeus amarus, in a large drinking-water system (Ömerli Dam Lake-Istanbul, Turkey). Journal of Black Sea/Mediterranean Environment, 11(2), 205-224.
- Reichard, M., Ondračková, M., Bryjová, A., Smith, C., & Bryja, J. (2009). Breeding resource distribution affects selection gradients on male phenotypic traits: experimental study on lifetime reproductive success in the bitterling fish (Rhodeus amarus). Evolution, 63(2), 377-390. https://doi.org/10.1111/j.1558-5646.2008.00572.x.
- Konečná, M. (2012). Reproduction mode of European Bitterling (Rhodeus amarus, Bloch, 1782) determined through rapid oocyte counts and size determination using digital imaging. Journal of Applied Ichthyology, 28(5), 806-810. https://doi.org/10.1111/j.1439-0426.2012.02036.x.
- Reichard, M., Smith, C., & Jordan, W. C. (2004). Genetic evidence reveals density‐dependent mediated success of alternative mating behaviours in the European bitterling (Rhodeus sericeus). Molecular ecology, 13(6), 1569-1578. https://doi.org/10.1111/j.1365-294X.2004.02151.x.
- Smith, C., Reichard, M., & Jurajda, P. (2003). Assessment of sperm competition by European bitterling, Rhodeus sericeus. Behavioral Ecology and Sociobiology, 53, 206-213. https://doi.org/10.1007/s00265-002-0576-x.
- Pateman-Jones, C., Rasotto, M. B., Reichard, M., Liao, C., Liu, H., ZIęba, G., & Smith, C. (2011). Variation in male reproductive traits among three bitterling fishes (Acheilognathinae: Cyprinidae) in relation to the mating system. Biological Journal of the Linnean Society, 103(3), 622-632. https://doi.org/10.1111/j.1095-8312.2011.01648.x.
- Spence, R., Reichard, M., & Smith, C. (2013). Strategic sperm allocation and a Coolidge effect in an externally fertilizing species. Behavioral Ecology, 24(1), 82-88. https://doi.org/10.1093/beheco/ars138.
- Smith, C., Spence, R., & Reichard, M. (2018). Sperm is a sexual ornament in rose bitterling. Journal of Evolutionary Biology, 31(11), 1610-1622. https://doi.org/10.1111/jeb.13357.
- Marconato, A., Rasotto, M. B., & Mazzoldi, C. (1996). On the mechanism of sperm release in three gobiid fishes (Teleostei: Gobiidae). Environmental Biology of fishes, 46, 321-327. https://doi.org/10.1007/BF00005009.
- Scaggiante, M., Mazzoldi, C., Petersen, C. W., & Rasotto, M. B. (1999). Sperm competition and mode of fertilization in the grass goby Zosterisessor ophiocephalus (Teleostei: Gobiidae). Journal of Experimental Zoology, 283(1), 81-90. https://doi.org/10.1002/(SICI)1097-010X(19990101)283:1<81::aid-jez9>3.0.CO;2-9.
- Arsan, O. M., Davydov, O. A., Diachenko, T. M., Evtushenko, M. Yu., Zhukynskyi, V. M., Kyrpenko, N. I., & Yakushyn, V. M. (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv: Logos,156-180.
- Avwioro, G. (2011). Histochemical uses of haematoxylin—a review. Jpcs, 1(5), 24-34.
- Genten, F., Terwinghe, E., & Danguy, A. (2009). Atlas of fish histology. CRC Press. https://doi.org/10.1201/9780367803599.
- Mokhtar, D. M. (2021). Fish histology: from cells to organs. Apple Academic Press. https://doi.org/10.1201/9781315205779.
- Khendel, N. V. (2013). Rehlametatsia provedennia eksperymentiv nad tvarynamy: mizhnarodni ta natsionalni pravovi standarty. Ukrainian Journal of International Law, 71-76.
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes: Text with EEA relevance. eur-lex.europa.eu. Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063.
- Polozhennia pro Komitet z pytan etyky (bioetyky). Zatverdzheno Nakaz Ministerstva osvity i nauky, molodi ta sportu Ukrainy No 1287 vid 19.11.2012 r. zakon.rada.gov.ua. Retrieved from: https://zakon.rada.gov.ua/rada/show/v1287736-12#n12.
- Patimar, R., Seifi, T., Farahi, A., & Ezzati, M. (2010). Life history pattern of the bitterling Rhodeus amarus (Bloch, 1782) in Siahroud River (Southern Caspian Sea-Iran). Ecohydrology & Hydrobiology, 10(1), 87-95. https://doi.org/10.2478/v10104-009-000044-6.