pdf35

Ribogospod. nauka Ukr., 2025; 1(71): 163-188
DOI: https://doi.org/10.61976/fsu2025.01.163
UDC 639.517.053:019.912“1868”

Australian red-claw crayfish (Cherax quadricarinatus Von Martens, 1868). Thematic bibliography

N. Hrynevych, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0001-7430-9498,Bila Tserkva National Agrarian University, Bila Tserkva
A. Sliusarenko, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-1896-8939, Bila Tserkva National Agrarian University, Bila Tserkva
O. Khomiak, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0003-3010-6757, Bila Tserkva National Agrarian University, Bila Tserkva
V. Zharchynska, This email address is being protected from spambots. You need JavaScript enabled to view it. , ORCID ID 0000-0002-5823-9095, Bila Tserkva National Agrarian University, Bila Tserkva

Purpose. To compile scientific sources on the biology, ecology, reproduction and rearing of the Australian red-claw crayfish Cherax quadricarinatus, to identify the main areas of research related to the distribution, feeding and impact of this species on the ecosystem.

Methodology. The methodology for compiling the thematic bibliography was based on a thorough search, systematisation and analysis of scientific sources.

Findings. The work resulted in the collection, systemization, and analyzis of a significant amount of literature covering the biological, ecological and economic aspects of the Australian red-claw crayfish Cherax quadricarinatus. The bibliography contains 154 publications, placed in alphabetical order and described in accordance with the requirements of the HAC, in accordance with DSTU 8302:2015 «Information and documentation. Bibliographic reference. General provisions and rules of drafting», taking into account the amendments (UKND code 01.140.40).

Practical Value. The list can be useful for students, teachers and researchers to access relevant publications for use in the educational process and research.

Keywords: aquaculture, Cherax quadricarinatus, distribution area, reproduction, ecdysis, morphometric analysis.

REFERENCES

  1. Abehsera, S., Bentov, S., Li, X., Weil, S., Manor, R., Sagi, S., Li, S., Li, F., Khalaila, I., Aflalo, E. D., & Sagi, A. (2021). Genes encoding putative bicarbonate transporters as a missing molecular link between molt and mineralization in crustaceans. Scientific Reports, 11(1), 11722. https://doi.org/10.1038/s41598-021-91155-w.
  2. Abehsera, S., Zaccai, S., Mittelman, B., Glazer, L., Weil, S., Khalaila, I., Bitton, R., Zarivach, R., Li, S., Li, F., Xiang, J., Manor, R., Aflalo, E.D., & Sagi, A. (2018). CPAP3 proteins in the mineralized cuticle of a decapod crustacean. Scientific Reports, 8(1), 2430. https://doi.org/10.1038/s41598-018-20835-x
  3. Abizar, Purnamasari, L., Widyawati, Affandi, M., & Putranto, T. W. C. (2020). Morphometric characteristics of crayfish Cherax quadricarinatus from atokan river, West Sumatera, Indonesia. Ecology, Environment and Conservation, 26(4), 1787–1792.
  4. Akmal, S. G., Santoso, A., Yonvitner, Yuliana, E., & Patoka, J. (2021). Redclaw crayfish (Cherax quadricarinatus): spatial distribution and dispersal pattern in Java, Indonesia. Knowledge and Management of Aquatic Ecosystems, 422, 16. https://doi.org/10.1051/kmae/2021015.
  5. Ali, M. Y., Pavasovic, A., Mather, P. B., & Prentis, P. J. (2017). Expression patterns of two carbonic anhydrase genes, Na+/K+-ATPase and V-type H+-ATPase, in the freshwater crayfish, Cherax quadricarinatus, exposed to low pH and high pH. Australian Journal of Zoology, 65(1), 50–59. https://doi.org/10.1071/ZO16048.
  6. Andriyeni, A., Zulkhasyni, Z., Athybi, G. S., & Pardiansyah, D. (2022). Effect of cutting organs of lobster shrimp (Cherax quadricarinatus) on moulting percentage and survival. Jurnal Agroqua: Media Informasi Agronomi Dan Budidaya Perairan, 20(1), 157–164. https://doi.org/10.32663/ja.v20i1.2653.
  7. Arias, A., & Torralba-Burrial, A. (2021). First record of the redclaw crayfish Cherax quadricarinatus (von Martens, 1868) on the Iberian Peninsula. Limnetica, 40, 33–42. https://doi.org/10.23818/limn.40.03.
  8. Azofeifa-Solano, J. C., Carranza, A. H. R., Naranjo-Elizondo, B., & Fonseca, M. C. (2017). Presence of the Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) (Parastacidae, Astacoidea) in a freshwater system in the Caribbean drainage of Costa Rica. BioInvasions Records, 6(4), 351–355. https://doi.org/10.3391/bir.2017.6.4.08.
  9. Azofeifa-Solano, J. C., Villalobos-Rojas, F., Romero-Chaves, R., & Wehrtmann, I. S. (2023). Modeling the habitat suitability of two exotic freshwater crayfishes in Mesoamerica and the Caribbean: Cherax quadricarinatus (von Martens, 1868) and Procambarus clarkii Girard, 1852 (Decapoda: Astacidea: Parastacidae, Cambaridae).Journal of Crustacean Biology, 43(4), ruad059. https://doi.org/10.1093/jcbiol/ruad059.
  10. Baudry, T., Becking, T., Goût, J. P., Arqué, A., Gan, H. M., Austin, C. M., Delaunay C., Juliette Smith-Ravin J., Roques J. A. C., & Grandjean, F. (2020). Invasion and distribution of the redclaw crayfish, Cherax quadricarinatus, in Martinique. Knowledge and Management of Aquatic Ecosystems, 421, 50. https://doi.org/10.1051/kmae/2020041.
  11. Baudry, T., Gismondi, E., Goût, J. P., Arqué, A., Smith-Ravin, J., & Grandjean, F. (2022). The invasive crayfish Cherax quadricarinatus facing chlordecone in Martinique: bioaccumulation and depuration study. Chemosphere, 286, 131926. https://doi.org/10.1016/j.chemosphere.2021.131926.
  12. Beatty, S. J., Ramsay, A., Pinder, A. M., & Morgan, D. L. (2020). Reservoirs act as footholds for an invasive freshwater crayfish. Pacific Conservation Biology, 26(1), 78–83. https://doi.org/10.1071/PC19012.
  13. Bian, Y., Liu, S., Liu, Y., Jia, Y., Li, F., Chi, M., Zheng J., Cheng S., & Gu, Z. (2022). Development of a multiplex PCR assay for parentage assignment of the redclaw crayfish (Cherax quadricarinatus). Aquaculture, 550, 737813. https://doi.org/10.1016/j.aquaculture.2021.737813.
  14. Cai, L., Zheng, J., Jia, Y., Gu, Z., Liu, S., Chi, M., & Cheng, S. (2020). Molecular characterization and expression profiling of three transformer-2 splice isoforms in the redclaw crayfish, Cherax quadricarinatus. Frontiers in Physiology,11(631), 10. https://doi.org/10.3389/fphys.2020.00631.
  15. Calvo, N. S., Stumpf, L., Cortés-Jacinto, E., Castillo Díaz, F., & López Greco, L. S. (2018). Mobilization of energetic reserves during starvation in juveniles of different size of the redclaw crayfish Cherax quadricarinatus.Aquaculture Nutrition, 24(3), 952–960. https://doi.org/10.1111/anu.12631.
  16. Casaretto, M. E., Stumpf, L., Azcuy, R. L., López Greco, L. S., & Colombatto, D. (2023). Also in crayfish: how phytase inclusion avoids phytic acid effects on hepatopancreas enzymes of redclaw Cherax quadricarinatus. Aquaculture Research, 10, 4341218. https://doi.org/10.1155/2023/4341218.
  17. Chakandinakira, A. T., Madzivanzira, T. C., Mashonga, S., Muzvondiwa, J. V., Ndlovu, N., & South, J. (2023). Socioeconomic impacts of Australian redclaw crayfish Cherax quadricarinatus in Lake Kariba. Biological Invasions, 25(9), 2801–2812. https://doi.org/10.1007/s10530-023-03074-8.
  18. Chen, H., Zhang, R., Liu, F., Shao, C., Liu, F., Li, W., Ren, J., Niu, B., Liu, H., & Lou, B. (2023). The chromosome-level genome of Cherax quadricarinatus. Scientific data, 10(1), 215. https://doi.org/10.1038/s41597-023-02124-z.
  19. Chen, H., Zhang, R., Liu, F., Shao, C., Liu, F., Li, W., Ren, J., Niu, B., Liu, H., & Lou, B. (2023). Publisher Correction: The chromosome-level genome of Cherax quadricarinatus. Scientific Data,10(1), 313. https://doi.org/10.1038/s41597-023-02186-z.
  20. Chen, L., Zheng, J., Jia, Y., Li, F., Gu, Z., Chi, M., Cheng, S., Liu, S., Jiang, W., & Liu, Y. (2022). Molecular characterization of the Ftz-f1 gene in redclaw crayfish Cherax quadricarinatus and its potential role in ovarian development. Aquaculture Research,53(15), 5261–5269. https://doi.org/10.1111/are.16010.
  21. Chen, Q., Lv, W., Jiao, Y., Liu, Z., Li, Y., Cai, M., Wu, D., Zhou, W., & Zhao, Y. (2020). Effects of exposure to waterborne polystyrene microspheres on lipid metabolism in the hepatopancreas of juvenile redclaw crayfish, Cherax quadricarinatus. Aquatic toxicology, 224, 105497. https://doi.org/10.1016/j.aquatox.2020.105497.
  22. Cheng, S., Zheng, J.-B., Jia, Y.-Y., Chi, M.-L., Jiang, W.-P., Liu, S.-L., Li, F., Liu, Y.-N., Gu, Z.-M., & Wang, D.-L. (2023). Effects of light color, photoperiod, and growth-related gene interference or overexpression on the survival, growth, or physiological and biochemical indices of red claw crayfish juveniles. Aquaculture,562, 738740. https://doi.org/10.1016/j.aquaculture.2022.738740.
  23. Chivambo, S., Mussagy, A., & Barki, A. (2020). Assessment of interspecific interactions between the invasive red-claw crayfish (Cherax quadricarinatus) and the mozambique tilapia (Oreochromis mossambicus).Brazilian Journal of Biology,80(4), 717–726. https://doi.org/10.1590/1519-6984.217868.
  24. Crandall, K. A., & Grave, S. D. (2017). An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology, 37(5), 615–653. https://doi.org/10.1093/jcbiol/rux070.
  25. Cui, Y., Hao, G., Lin, F., Zhou, D., Sheng, P., Ding, L., & Zhang, H. (2020). Comparison of the nutrition and texture of Cherax quadricarinatus muscle in two culture patterns. Food and Fermentation Industries, 46(21), 115–120. https://doi.org/10.13995/j.cnki.11-1802/ts.023977.
  26. Dai, P., Zheng, J., Luan, S., Kong, J., Jia, Y., & Gu, Z. (2022). Estimates of heritability and genetic correlation for growth traits at harvest in redclaw crayfish, Cherax quadricarinatus. Aquaculture,561, 738631. https://doi.org/10.1016/j.aquaculture.2022.738631.
  27. Dali, M. Z. M., Nasir, M. S. A. M., Khaleel, A. G., Chun, L. M., Gan, H. M., Wan, N. A. F. N., Umar, R., & Kamarudin, A. S. (2023). Predicting Cherax quadricarinatus habitat distribution patterns through the usage of GIS and eDNA analysis in Terengganu, Malaysia. Sains Malaysiana, 52(2), 343–354. https://doi.org/10.17576/jsm-2023-5202-03.
  28. Dali, M. Z. M., Nasir, M. S. A. M., Khaleel, A. G., Madiran, N. A., Ismail, N., & Kamarudin, A. S. (2023). Genetic variability of wild populations of invasive redclaw crayfish (Cherax quadricarinatus) von Martens 1868 across peninsular Malaysia. Malaysian Applied Biology,52(1), 35–42. https://doi.org/10.55230/mabjournal.v52i1.2427.
  29. Daubnerová, I., & Žitňan, D. (2021). Ecdysis triggering hormone. Handbook of Hormones (2nd edn.), 2, 829–831. https://doi.org/10.1016/B978-0-12-820649-2.00224-2.
  30. Douthwaite, R. J., Jones, E. W., Tyser, A. B., & Vrdoljak, S. M. (2018). The introduction, spread and ecology of redclaw crayfish Cherax quadricarinatus in the Zambezi catchment. African Journal of Aquatic Science,43, 353–366. https://doi.org/10.2989/16085914.2018.1517080.
  31. Duan, H., Jin, S., Li, F., Zhang, X., & Xiang, J. (2018). Neuroanatomy and morphological diversity of brain cells from adult crayfish Cherax quadricarinatus. Journal of Oceanology and Limnology,36(6), 2368–2378. https://doi.org/10.1007/s00343-019-7145-x.
  32. Fahruddin, M., Suriyadin, A., & Murtawan, H. (2022). Pertumbuhan dan kelangsungan hidup lobster air tawar (Cherax quadricarinatus) dengan pemberian substrat yang berbeda. Jurnal Marikultur,4(1), 31–41.
  33. Fasya, A. H. (2019). Study of patterns in the relationship of ecdysis with the age of freshwater crayfish Cherax quadricarinatus aged 76 days. IOP Conference Series: Earth and Environmental Science, 236(1), 012012. https://doi.org/10.1088/1755-1315/236/1/012012.
  34. Fatihah, S. N., Lim, L-S., Harman, M-F., & Ikhwanuddin, M. (2020). Effect of substrate on growth, survival and moulting in juvenile red claw, Cherax quadricarinatus. Journal of PeerScientist, 3(2), e1000027.
  35. Fauzan Isma, M., & Syahril, M. (2021). Effects of difference shelter on survival rate and growth of freshwater lobster (Cherax quadricarinatus). Jurnal Ilmiah Samudra Akuatika, 5(1), 1–8. https://doi.org/10.33059/jisa.v5i1.3547.
  36. Fedorovych, Ye. I., Muzhenko, A. V., & Sliusar M. V. (2022). Zviazok khimichnykh ta fizychnykh pokaznykiv vody z morfolohichnymy oznakamy rakiv riznykh vydiviu Visnyk Sumskoho natsionalnoho ahrarnoho universytetu,4(47), 165–170. https://doi.org/10.32845/bsnau.lvst.2021.4.28.
  37. Fedorovych, Ye. I., Muzhenko, A. V., Sliusar, M. V., & Kovalchuk, I. I. (2022). Osoblyvosti protsesu lynky rakiv riznykh vydiv. Tavriiskyi naukovyi visnyk,126, 230–237. https://doi.org/10.32851/2226-0099.2022.126.32.
  38. Fu, R., Li, F., & Yang, F. (2019). Separation of hemocytes of Cherax quadricarinatus by percoll discontinuous density gradient centrifugation. Journal of Fisheries of China, 43(4), 841–851. https://doi.org/10.11964/jfc.20180511286.
  39. Ghanawi, J., Saoud, G., Zakher, C., Monzer, S., & Saoud, I.P. (2019). Clove oil as an anaesthetic for Australian redclaw crayfish Cherax quadricarinatus.Aquaculture Research,50(12), 3628–3632. https://doi.org/10.1111/are.14319.
  40. Hassan, M., Azri-Shah, N. N., Zakariah, M. I., Yusoff, N. A. H., Abdullah, F., Wahab, W., Ishak, A. N., Husin, N. M., & Jones, J. B. (2022). Morphological and molecular identification of Diceratocephala boschmai Baer, 1953 and Decadidymus sp. Cannon, 1991 on wild and cultured environment of Cherax quadricarinatus in Malaysia. BioInvasions Records, 11(2), 495–509. https://doi.org/10.3391/bir.2022.11.2.22.
  41. Hassan, M., Azri-Shah, N., Zakariah, M., Yusoff, N., Abdullah, F., Wahab, W., Ishak, A., Husin, N., & Jones, J. (2023). Prevalence of temnocephalids on cultured and wild Cherax quadricarinatus in Malaysia. Egyptian Journal of Aquatic Research, 49(3), 395–400. https://dx.doi.org/10.1016/j.ejar.2022.03.004.
  42. Hayakijkosol, O., Jaroenram, W., Owens, L., & Elliman, J. (2021). Reverse transcription polymerase chain reaction (RT-PCR) detection for Australian Cherax reovirus from redclaw crayfish (Cherax quadricarinatus). Aquaculture,530, 735881. https://doi.org/10.1016/j.aquaculture.2020.735881.
  43. Hernández-Aguirre, L. E., Fuentes-Sidas, Y. I., Rivera-Rangel, L. R., Gutiérrez-Méndez, N., Yepiz-Plascencia, G., Chávez-Flores, D., Zavala-Díaz de la Serna, F.J., Peralta-Pérez, M. D. R., & García-Triana, A. (2022). cDNA characterization and expression of selenium-dependent CqGPx3 isoforms in the crayfish Cherax quadricarinatus under high temperature and hypoxia. Genes,13(2), 179. https://doi.org/10.3390/genes13020179.
  44. Hernández-Rubio, M. C., de Jesús Gutiérrez-Ladrón de Guevara, M., & Figueroa-Lucero, G. (2021). Shelters presence effect on development of early juvenile Cherax quadricarinatus (Decapoda; Parastacidae). Hidrobiologica,30(3), 69–75. https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n1/Hernandez.
  45. Hou, Y., Jia, R., Sun, W., Ding, H., Li, B., & Zhu, J. (2023). Red claw crayfish Cherax quadricarinatus cultivation influences the dynamics and assembly of benthic bacterial communities in paddy fields. Environments,10(10), 178. https://doi.org/10.3390/environments10100178.
  46. Hrynevych, N. Ye., & Zharchynska, V. S. (2022). Osoblyvosti zovnishnoi budovy Cherax quadricarinatus (Von Martens, 1868). Problems of science and practice, tasks and ways to solve them : XX International scientific and practical conference. Warsaw, 44–46.
  47. Hyde, C. J., Fitzgibbon, Q. P., Elizur, A., Smith, G. G., & Ventura, T. (2020). CrustyBase: an interactive online database for crustacean transcriptomes. BMC Genomics,21, 637. https://doi.org/10.1186/s12864-020-07063-2.
  48. Iqbal, M. A., Setyobudiandi, I., Krisanti, M., & Wardiatno, Y. (2019). Produksi telur Cherax quadricarinatus (Von Martens, 1868) di danau Lido, Jawa Barat. Jurnal Pengelolaan Perikanan Tropis,3(2), 45–52.
  49. Ismail, N., Nasir, M. S. A. M., Khaleel, A. G., Sallehuddin, A. S., Idrus, S. N. S., Istiqomah, I., Balu Alagar Venmathi Maran B. A. V., & Kamarudin, A. S. (2021). First wild record of australian redclaw crayfish Cherax quadricarinatus (Von Martens, 1868) in the east coast of peninsular Malaysia. BioInvasions Records,10(2), 360–368. https://doi.org/10.3391/bir.2021.10.2.14.
  50. Jaroenram, W., Hayakijkosol, O., Owens, L., & Elliman, J. (2021). Establishing a gold standard method for the detection of Cherax reovirus using reverse transcriptase, quantitative, polymerase chain reaction. Journal of virological methods, 293, 114169. https://doi.org/10.1016/j.jviromet.2021.114169.
  51. Jerry, E. M., Karnaneedi, S., Ruethers, T., Jerry, D. R., Condon, K., & Lopata, A. L. (2024). Allergen diversity and abundance in different tissues of the redclaw crayfish (Cherax quadricarinatus).Foods,13(2), 315. https://doi.org/10.3390/foods13020315.
  52. Jin, L., Jia, S., Zhang, W., Chen, Y., Li, S., Liu, P., Li, J., & Lv, J. (2022). Identification of sex-specific DNA markers: providing molecular evidence for the ZW sex determination system in the redclaw crayfish (Cherax quadricarinatus). Aquaculture, 546, 737254. https://doi.org/10.1016/j.aquaculture.2021.737254.
  53. Jutagate, T., Kwangkhwang, W., & Saowakoon, S. (2023). Growth and competitions of the australian red-claw crayfish, Cherax quadricarinatus (von Martens, 1868) in Thailand: the experimental approaches. Aquatic Invasions,18(1), 103–117. https://doi.org/10.3391/ai.2023.18.1.103301.
  54. Kawai, T. (2017). Observation on mandible and gill morphology in Pacifastacus leniusculus and Cherax quadricarinatus with a review of the introduction of alien crayfish into Japan. Freshwater Crayfish,23, 29–39. https://doi.org/10.5869/fc.2017.v23-1.29.
  55. King, G., Balcombe, S., Capon, S., & Cockayne, B. (2022). Do opposites attack? Resource interactions between an alien and native crayfish from the lake Eyre basin. Marine and Freshwater Research,73(7), 873–883. https://doi.org/10.1071/MF21302.
  56. Kodiran, T., Mashar, A., Febriana, R., Nurulhayati, E. R., Nurulhafidzah, A., & Wardiatno, Y. (2020). Development of economic valuation method for the direct impact of alien invasive species based on food competition in aquatic ecosystems. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan,10(2), 198–208. https://doi.org/10.29244/jpsl.10.2.198-208.
  57. Kruppke, B., Farack, J., Weil, S., Aflalo, E.D., Poláková, D., Sagi, A., & Hanke, T. (2020). Crayfish hemocyanin on chitin bone substitute scaffolds promotes the proliferation and osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research – Part A,108(3), 694–708. https://doi.org/10.1002/jbm.a.36849.
  58. Kuhu, R., Mantiri, R. O. S. E., & Tombokan, J. L. (2018). Some biological aspects of freshwater lobsters, Cherax quadricarinatus, in Ralik River of Southeast Minahasa and in Tondano Lake of Minahasa. Jurnal Ilmiah Platax,7(1), 34. https://doi.org/10.35800/jip.7.1.2019.21444.
  59. Levy, T., & Sagi, A. (2020). The “IAG-Switch” – a key controlling element in Decapod crustacean sex differentiation. Frontiers in Endocrinology,11, 651. https://doi.org/10.3389/fendo.2020.00651.
  60. Levy, T., Ventura, T., De Leo, G., Grinshpan, N., Abu Abayed, F. A., Manor, R., Savaya, A., Sklarz, M. Y., Chalifa-Caspi, V., Mishmar, D., & Sagi, A. (2020). Two homogametic genotypes – one crayfish: on the consequences of intersexuality. iScience,23, 101652. https://doi.org/10.1016/j.isci.2020.101652.
  61. Li, J., Chen, Y., Zhang, T., Jiang, Q., Peng, G., Yang, J., Tang J., & Si, Q. (2019). Establishment of a primary culture of haemocytes from the Australian red claw crayfish, Cherax quadricarinatus. Crustaceana,92(11–12), 1271–1278. https://doi.org/10.1163/15685403-00003937.
  62. Lin, D., Guo, Y., Chen, X., Yang, H., Li, Q., Liu, Q., Luo, F., Meng, K., Yang, S., Cheng, X., Ma, W., Chen, X., Wang, M., & Zhao, Y. (2022). Identification and expression pattern of the sex determination gene fruitless-like in Cherax quadricarinatus. Comparative Biochemistry and Physiology Part – B: Biochemistry and Molecular Biology,259, 110704. https://doi.org/10.1016/j.cbpb.2021.110704.
  63. Lin, X., Liu, C., Cai, L., Yang, J., Zhou, J., Jiang, H., Shi, Y., & Gu, Z. (2021). Effect of high hydrostatic pressure processing on biochemical characteristics, bacterial counts, and color of the red claw crayfish Cherax quadricarinatus. Journal of Shellfish Research,40, 177–184. https://doi.org/10.2983/035.040.0117.
  64. Liu, C., Li, M., Wang, Y., Yang, Y., Wang, A., & Gu, Z. (2022). Effects of high hydrostatic pressure and storage temperature on fatty acids and non-volatile taste active compounds in red claw crayfish (Cherax quadricarinatus). Molecules,27(16), 5098. https://doi.org/10.3390/molecules27165098.
  65. Low, B. W., Zeng, Y., Tan, H. H., & Yeo, D. C. J. (2021). Predictor complexity and feature selection affect Maxent model transferability: evidence from global freshwater invasive species. Diversity and Distributions,27(3), 497–511. https://doi.org/10.1111/ddi.13211.
  66. Lu Y-P., Zheng P-H., Zhang Z-L., Zhang X-X., Li J-T., Wang D-M., Xu J-R., Xian J-A., & Wang A-L. (2023). Hepatopancreas transcriptome alterations in red claw crayfish (Cherax quadricarinatus) under microcystin-LR (MC-LR) stress. Aquaculture Reports,29, 101478. https://doi.org/10.1016/j.aqrep.2023.101478.
  67. Lu, Y. P., Zheng, P. H., Zhang, X. X., Li, J. T., Zhang, Z. L., Xu, J. R., Meng Y-Q., Li, J. J., Xian J. A., & Wang, A. L. (2023). New insights into the regulation mechanism of red claw crayfish (Cherax quadricarinatus) hepatopancreas under air exposure using transcriptome analysis. Fish & Shellfish Immunology, 132, 108505. https://doi.org/10.1016/j.fsi.2022.108505.
  68. Macias, N. A., Torres, P. J., & Colón-Gaud, C. (2021). Records of the Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) on the island of Puerto Rico. BioInvasions Records,10(2), 348–359. https://doi.org/10.3391/bir.2021.10.2.13.
  69. Madzivanzira, T. C., Chakandinakira, A. T., Mungenge, C. P., O’brien, G., Dalu, T., & South, J. (2023). Get it before it gets to my catch: misdirection traps to mitigate against socioeconomic impacts associated with crayfish invasion. Management of Biological Invasions,14(2), 335–346. https://doi.org/10.3391/mbi.2023.14.2.10.
  70. Madzivanzira, T. C., South, J., & Weyl, O. L. F. (2021). Invasive crayfish outperform Potamonautid crabs at higher temperatures. Freshwater Biology,66(5), 978–991. https://doi.org/10.1111/fwb.13691.
  71. Madzivanzira, T. C., South, J., Nhiwatiwa, T., & Weyl, O. L. F. (2021). Standardisation of alien invasive australian redclaw crayfish Cherax quadricarinatus sampling gear in Africa. Water SA,47(3), 380–384. https://doi.org/10.17159/wsa/2021.v47.i3.11866.
  72. Madzivanzira, T. C., South, J., Wood, L. E., Nunes, A. L., & Weyl, O. L. F. (2020). A review of freshwater crayfish introductions in Africa. Reviews in Fisheries Science & Aquaculture,29(2), 218–241. https://doi.org/10.1080/23308249.2020.1802405.
  73. Madzivanzira, T. C., Weyl, O. L. F., & South, J. (2022). Ecological and potential socioeconomic impacts of two globally-invasive crayfish. NeoBiota,72, 25–43. https://doi.org/10.3897/neobiota.72.71868.
  74. Mamuaya, J., Mingkid, W. M., Kalesaran, O. J., Sinjal, H. J., Tumbol, R. A., & Tombokan, J. L. (2019). The survival rate and growth of juvenile crayfish (Cherax quadricarinatus) with different types of shelter. Jurnal Ilmiah Platax,7(2), 427–431. http://dx.doi.org/10.35800/jip.7.2.2019.24510.
  75. Mamuko, N., Mingkid, W. M., Watung, J. C., Kreckhoff, R. L., Longdong, S. N. J., & Manginsela, F. B. (2021). The use of nutmeg oil (Myristica fragrans) Houttuyn 1774 as anesthetic component in different concentrations for the young freshwater lobster (Cherax quadricarinatus) Von Martens1868. E-Journal Budidaya Perairan,10(1), 73–80. https://doi.org/10.35800/bdp.10.1.2022.35535.
  76. Marshall, B. E. (2019). Crayfish, catfish and snails: the perils of uncontrolled biological control. African Journal of Aquatic Science,44(1), 1–5. https://doi.org/10.2989/16085914.2019.1599810.
  77. Marufu, L. T., Dalu, T., Crispen, P., Barson, M., Simango, R., Utete, B., & Nhiwatiwa, T. (2018). The diet of an invasive crayfish, Cherax quadricarinatus (Von Martens, 1868), in Lake Kariba, inferred using stomach content and stable isotope analyses. BioInvasions Records,7(2), 121–132. https://doi.org/10.3391/bir.2018.7.2.03.
  78. Marufu, L., Dalu, T., Phiri, C., & Nhiwatiwa, T. (2017). Diet composition changes in tigerfish of Lake Kariba following an invasion by redclaw crayfish. Annales de Limnologie, 53, 47–56. https://doi.org/10.1051/limn/2016033.
  79. Mashar, A., Wahyuni, Y. S., Hakim, A. A., & Wardiatno, Y. (2019). Pendekatan truss morphometric dalam menganalisis kekerabatan populasi Cherax quadricarinatus (Von Martens, 1868) di Perairan Jawa Barat. Jurnal Pengelolaan Perikanan Tropis, 3(2), 20–27. http://dx.doi.org/10.29244/jppt.v3i2.30432.
  80. Mauro, M., Arizza, V., Arculeo, M., Attanzio, A., Pinto, P., Chirco, P., Badalamenti G., Tesoriere L., & Vazzana, M. (2022). Haemolymphatic parameters in two aquaculture crustacean species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals,12(5), 543. https://doi.org/10.3390/ani12050543.
  81. Meng, F., Zhang, G., Yin, W., Wang, L., & Sun, J. (2019). Study on interaction of autophagosome and microtubule during autophagy process in Cherax quadricarinatus. Journal of Fisheries of China, 43(12), 2494–2500. https://doi.org/10.11964/jfc.20180811406.
  82. Mhlanga, L., Marufu, L., Mupandawana, G., & Nhiwatiwa, T. (2020) An examination of the effectiveness of traps and baits as a possible means of harvesting crayfish, Cherax quadricarinatus in Sanyati Basin, Lake Kariba, Zimbabwe. Water SA,46(4), 675–678. https://doi.org/10.17159/wsa/2020.v46.i4.9083.
  83. Minh Nhut, T., Mykles, D.L., Elizur, A., & Ventura, T. (2020). Ecdysis triggering hormone modulates molt behaviour in the redclaw crayfish Cherax quadricarinatus, providing a mechanistic evidence for conserved function in molt regulation across Pancrustacea.General and Comparative Endocrinology,298(1), 113556. https://doi.org/10.1016/j.ygcen.2020.113556.
  84. Morningstar, C. R., Daniel, W. M., Neilson, M. E., & Yazaryan, A. K. (2020). The first occurrence of the Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the contiguous United States. BioInvasions Records, 9(1), 120–126. https://doi.org/10.3391/bir.2020.9.1.16.
  85. Nasir, S. A. M., Khaleel, A. G., Badaluddin, N. A., Kok, S-Y., Ismail, N., Sheriff, S. M., & Kamarudin, A-S. (2020). Development of species-specific primer sets for australian redclaw crayfish (Cherax quadricarinatus) detection from water environmental DNA (eDNA). Bioscience Research,17, 90–99.
  86. Neelima, H., Srinivasa, R. B., & Ramachandra, R. P. (2017). Crustacean molting: regulation and effects of environmental toxicants. Journal of Marine Science: Research & Development, 7(5), 236. http://dx.doi.org/10.4172/2155-9910.1000236.
  87. Nguyen, C. D. H., Ventura, T., & Elizur, A. (2019). Crustacean nuclear localization signals help facilitating the delivery of DNA into Australian red-claw crayfish cells. Aquaculture,499, 149–159. https://doi.org/10.1016/j.aquaculture.2018.09.030.
  88. Nong, C., Chen, Y., Yang, H., Chen, N., Tian, C., Li, S., & Chen, H. (2024). Phenotypic sorting of individual male and female intersex Cherax quadricarinatus and analysis of molecular differences in the gonadal transcriptome. Comparative Biochemistry and Physiology – Part D: Genomics and Proteomics,49, 101194. https://doi.org/10.1016/j.cbd.2024.101194.
  89. Nong, W., Chai, Z.Y.H., Jiang, X., Qin, J., Ma, K. Y., Chan, K. M., Chan, T. F., Chow, B. K. C., Kwan, H. S., Wong, C. K. C., Qiu, J-W., Hui, J. H. L., & Chu, K. H. (2020). A crustacean annotated transcriptome (CAT) database. BMC Genomics, 21(1), 32. https://doi.org/10.1186/s12864-019-6433-3.
  90. Norshida, I., Mohd Nasir, M. S. A., Khaleel, A. G., Sallehuddin, A. S., Syed Idrus, S. N., Istiqomah, I., & Ahmad, S. K. (2021). First wild record of Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the East Coast of Peninsular Malaysia. BioInvasions Records, 10(2), 360–368. https://doi.org/10.3391/bir.2021.10.2.14.
  91. Nur, M., Komariyah, S., & Haser, T. F. (2023). The influence of various substrates on the survival of freshwater lobster (Cherax quadricarinatus) in the open transport system. Jurnal Ilmiah Samudra Akuatika, 7(2), 1–8. https://doi.org/10.33059/jisa.v7i2.9022.
  92. Patoka, J., Wardiatno, Y., Mashar, A., Wowor, D., Jerikho, R., Takdir, M., Purnamasari, L., Petrtyl, M., Kalous, L., Kouba, A., & Blaha, M. (2018). Redclaw crayfish, Cherax quadricarinatus (von Martens, 1868), widespread throughout Indonesia. BioInvasions Records,7(2), 185–189. https://doi.org/10.3391/bir.2018.7.2.11.
  93. Petersen, R. M, Hoffman, A. C, Kotze, P., & Marr, S. M. (2017). First record of the invasive Australian redclaw crayfish Cherax quadricarinatus (Von Martens, 1868) in the Crocodile river, Kruger National Park, South Africa. Koedoe: African Protected Area Conservation and Science, 59(159), 1–3. https://doi.org/10.4102/koedoe.v59i1.1435.
  94. Purnamasari, L., Kasmeri, R., Amin, M. H. F. adil, & Soegianto, A. (2018). Morphometric characteristics of alien crayfish Cherax quadricarinatus from Maninjau Lake (West Sumatra, Indonesia). Polish Journal of Natural Sciences,33(3), 369–383.
  95. Rakhmawati, R., Aprilia, T., Indariyanti, N., Saputra, A., & Marlina, E. (2023). Color quality improvement of Cherax quadricarinatus with dragon fruit peel meal utilization. Depik,12(3), 314–319. https://doi.org/10.13170/depik.12.3.28628.
  96. Rani, Z., Ridwanto, Nasution, H. M., Kaban, V. E., Nasri, N., & Karo, N. B. (2023). Antibacterial activity of freshwater lobster (Cherax quadricarinatus) shell chitosan gel preparation against Escherichia coli and Staphylococcus aureus.Journal of Applied Pharmaceutical Science,13(2), 146–153. https://doi.org/10.7324/JAPS.2023.130216.
  97. Rida, R., Zein-Eddine, R., Kreydiyyeh, S., Garza de Yta, A., & Saoud, I. P. (2021). Influence of salinity on survival, growth, hemolymph osmolality, gill sodium potassium ATPase activity, and sodium potassium chloride co-transporter expression in the redclaw crayfish Cherax quadricarinatus. Journal of the World Aquaculture Society, 52(2), 466–474. https://doi.org/10.1111/jwas.12762.
  98. Ridwanto, Daulay, A. S., & Gurning, K. (2022). Isolation and characterization of chitosan from sea and freshwater waste, North Sumatera province, Indonesia. Rasayan Journal of Chemistry,15(2), 780–785. https://doi.org/10.31788/RJC.2022.1526721.
  99. Rigg, D. P., Courtney, R. L., Jones, C. M., & Seymour, J. E. (2021). Morphology and weight-length relationships for the first six instars of Cherax quadricarinatus (von Martens, 1868). Freshwater Crayfish,26(1), 9–16. https://doi.org/10.5869/fc.2021.v26-1.9.
  100. Rodríguez-Almaraz, G. A., Mendoza, R., Aguilera-González, C., Barriga, C., & Tirado-Velarde, M. (2018). Additional records of wild populations of the Australian crayfish Cherax quadricarinatus in Mexico. Revista Mexicana de Biodiversidad,89(4), 1322–1327. https://doi.org/10.22201/ib.20078706e.2018.4.2065.
  101. Sacristán, H. J., Rodríguez, Y. E., De Los Angeles Pereira, N., López Greco, L. S., Lovrich, G. A., & Fernández Gimenez, A. V. (2017). Energy reserves mobilization: strategies of three decapod species. PLoS One,12(9), e0184060. https://doi.org/10.1371/journal.pone.0184060.
  102. Sakuna, K., Elliman, J., & Owens, L. (2018). Comparison of molecular detection PCR methods for Chequa iflavirus in freshwater crayfish, Cherax quadricarinatus. Journal of virological methods,251, 139–144. https://doi.org/10.1016/j.jviromet.2017.10.013.
  103. Sánchez-Hernández, J. C., Pacheco-Ortiz, J. A., Rodríguez-Sosa, L., Calderón-Rosete, G., & Villagran-Vargas, E. (2018). Asymmetric firing rate from crayfish left and right caudal photoreceptors due to blue and green monochromatic light pulses. Symmetry, 10(9), 389. https://doi.org/10.3390/sym10090389.
  104. Sánchez-Salgado, J. L., Pereyra, M. A., Agundis, C., Vivanco-Rojas, O., Rosales, C., Pascual, C., Alpuche-Osorno, J. J., & Zenteno, E. (2018). The effect of the lectin from Cherax quadricarinatus on its granular hemocytes. Fish & Shellfish Immunology,77, 131–138. https://doi.org/10.1016/j.fsi.2018.03.050.
  105. Sanjar, A., Davis, D. R., & Kline, R. J. (2023). Evidence of an established population of Cherax quadricarinatus (von Martens, 1868) in south Texas, USA. BioInvasions Records,12(1), 284–291. https://doi.org/10.3391/bir.2023.12.1.24.
  106. Shahroom, A., Shapawi, R., Mustafa, S., Halid, N. F. A., Estim, A., & Tuzan, A. D. (2023). Effects of eggshell and seashell powder as natural dietary calcium supplements on growth, molting frequency, and carapace calcium composition of juvenile red claw crayfish, Cherax quadricarinatus. PeerJ,11, e15449. https://doi.org/10.7717/peerj.15449.
  107. Shaked, S. A., Abehsera, S., Levy, T., Chalifa-Caspi, V., & Sagi, A. (2020). From sporadic single genes to a broader transcriptomic approach: insights into the formation of the biomineralized exoskeleton in decapod crustaceans. Journal of Structural Biology, 212(2), 107612. https://doi.org/10.1016/j.jsb.2020.107612.
  108. Shaked, S. A., Abehsera, S., Ziegler, A., Bentov, S., Manor, R., Weil, S., Ohana, E., Eichler, J., Aflalo, E. D., & Sagi, A. (2024). A transporter that allows phosphate ions to control the polymorph of exoskeletal calcium carbonate biomineralization. Acta Biomaterialia,178, 221–232. https://doi.org/10.1016/j.actbio.2024.02.035.
  109. Shehata, A. I., Wang, T., Habib, Y. J., Wang, J., Fayed, W. M., & Zhang, Z. (2020). The combined effect of vitamin E, arachidonic acid, Haemtococcus pluvialis, nucleotides and yeast extract on growth and ovarian development of crayfish (Cherax quadricarinatus) by the orthogonal array design. Aquaculture Nutrition,26(6), 2007–2022. https://doi.org/10.1111/anu.13142.
  110. Shehata, A. I., Wang, T., Wang, J., & Zhang, Z. (2022). Effect of feed additives in the diet on the growth and testicular development of male red claw crayfish (Cherax quadricarinatus) using orthogonal experiments. Animal Feed Science and Technology, 283, 115180. https://doi.org/10.1016/j.anifeedsci.2021.115180.
  111. Shyamal, S., Das, S., Guruacharya, A., Mykles, D. L., & Durica, D. S. (2018). Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Scientific Reports,8, 7307. https://doi.org/10.1038/s41598-018-25368-x.
  112. Sidharta, V., Pinandoyo, P., & Nugroho, R. A. (2018). Performa kematangan gonad, fekunditas, dan derajat penetasan melalui strategi pemberian pakan alami yang berbeda pada calon induk lobster air tawar (Cherax quadricarinatus). Jurnal Sains Akuakultur Tropis, 2(2), 64–74. https://doi.org/10.14710/sat.v2i2.3150.
  113. Slusar, M., Muzhenko, A., Kovalchuk, I., Borshchenko, V., & Verbelchuk, T. (2023). Study of the embryonic period of female crayfish egg development in different species. Scientific Horizons,26(12), 22–31. https://doi.org/10.48077/scihor12.2023.22.
  114. Smith, G., Glendinning, S., & Ventura, T. (2023). Transcriptomic changes following induced de-masculinisation of australian red claw crayfish Cherax quadricarinatus. International Journal of Molecular Sciences,24(4), 3292. https://doi.org/10.3390/ijms24043292.
  115. South, J., Madzivanzira, T. C., Tshali, N., Measey, J., & Weyl, O. L. F. (2020). In a pinch: mechanisms behind potential biotic resistance toward two invasive crayfish by native African freshwater crabs. Frontiers in Ecology and Evolution, 8, 72. https://doi.org/10.3389/fevo.2020.00072.
  116. Sun, L. H., Li, Q., Jiang, J. H., Chen, J. M., Gao, L. M., & Guo, J. L. (2023). Analysis on phenotypic traits and muscle nutritional composition of Cherax quadricarinatus in different specifications. Oceanologia et Limnologia Sinica,54(3), 885–894. https://doi.org/10.11693/hyhz20220800220.
  117. Sun, L., Li, Q., Zhang, H., Jiang, J., Chen, J., Gao, L., & Guo, J. (2023). Analysis of change of nutrients from fertilized eggs to newly hatched shrimp of Cherax quadricarinatus. Journal of Shanghai Ocean University,32(2), 348–356. https://doi.org/10.12024/jsou.20220203718.
  118. Sun, Y., Shan, X., Li, D., Liu, X., Han, Z., Qin, J., Guan B., Tan L., Zheng J., Wei M., & Jia, Y. (2023). Analysis of the differences in muscle nutrition among individuals of different sexes in redclaw crayfish, Cherax quadricarinatus. Metabolites,13(2), 190. https://doi.org/10.3390/metabo13020190.
  119. Susanto, G. N., Supono, & Ikrom, F. D. (2018). Sex reversal of juvenile freshwater crayfish (Cherax quadricarinatus) influenced by steroid extract of sea cucumber and 17α-methyltestosterone hormone at different temperatures. In AIP Conference Proceedings, 2002(1). https://doi.org/10.1063/1.5050123.
  120. Syaharuddin, S. (2021). Pengaruh penambahan kalsium karbonat (CaCO3) terhadap kelangsungan hidup benih lobster air tawar (Cherax quadricarinatus). Agrokompleks, 21(2), 48–52. https://doi.org/10.51978/japp.v21i2.369.
  121. Tahir, U. B., Deng, Q., Li, S., Liu, Y., Wang, Z. & Gu, Z. (2017). First record of a new epibionts suctorian ciliate Tokophrya huangmeiensis sp.n. (Ciliophora, Phyllopharyngea) from redclaw crayfish Cherax quadricarinatus von Martens 1868. Zootaxa,4269(2), 287–295. https://doi.org/10.11646/zootaxa.4269.2.7.
  122. Tampubolon, I., & Maitindom, F. A. (2023). Length weight relationship of fresh water lobster (Cherax quadricarinatus) in lake Paniai, Paniai district. Jurnal Cakrawala Ilmiah,2(8), 3251–3260. https://doi.org/10.53625/jcijurnalcakrawalailmiah.v2i8.5518.
  123. Tan, M. H., Gan, H. M., Lee, Y. P., Grandjean, F., Croft, L. J., & Austin, C. M. (2020). A giant genome for a giant crayfish (Cherax quadricarinatus) with insights into cox1 pseudogenes in decapod genomes. Frontiers in genetics,11, 201. https://doi.org/10.3389/fgene.2020.00201.
  124. Tapia-Varela, J. R., Ponce-Palafox, J. T., Palacios-Salgado, D. S., Romero-Bañuelos, C. A., Nieto-Navarro, J. T., & Aguiar-García, P. (2020). Establishment of the exotic invasive redclaw crayfish Cherax quadricarinatus (Von martens, 1868) in the coastal plain of San Blas, Nayarit, Se Gulf of California, Mexico. BioInvasions Records,9(2), 357–366. https://doi.org/10.3391/bir.2020.9.2.21.
  125. Taryono, Mashar, A., & Aryasa, S. (2021). Management policy of invasive species red claw crayfish (Cherax quadricarinatus) at Lido Lake, Bogor Regency. In IOP Conference Series: Earth and Environmental Science,744, 012090. https://doi.org/10.1088/1755-1315/744/1/012090.
  126. Tee, Z-B., Ibrahim, S., & Teoh, C-Y. (2022). Comparative study on the nutritional content and physical attributes of giant freshwater prawn (Macrobrachium rosenbergii) and redclaw crayfish (Cherax quadricarinatus) meats. 07 June. Preprint (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1695209/v1.
  127. Tengku Zainal Abidin, T. Z. H., Mat Ali, N. N., Abu Bakar, F. I., Ahmad Bakri, F. A., Abu Bakar, M. F., Malik, N. H., & Abidin, M. Z. (2023). Nutritional composition and antioxidant activity of freshwater lobster in Malaysia: a short review. Asian Journal of Chemistry,35(2), 301–304. https://doi.org/10.14233/ajchem.2023.24050.
  128. Tierney, L. J., Wild, C. H., & Furse, J. M. (2019). Total incombustible (mineral) content of Cherax quadricarinatus differs between feral populations in Central-Eastern Australia. PeerJ, 17. http://dx.doi.org/10.7717/peerj.6351.
  129. Tiftazani, M. H., Suparmi, & Sumarto. (2022). Storage time of freshwater lobster (Cherax quadricarinatus) with green betel leaf anesthesia (Piper betle L.).Terubuk,50(3), 1619–1623.
  130. Todd, S.-R.L., & Hyslop, E. J. (2023). Morphometrics, diet, reproductive biology, and ecological interactions of the introduced redclaw crayfish, Cherax quadricarinatus (Decapoda: Parastacidae), in Jamaica, West Indies. Caribbean Journal of Science,53(2), 397–410. https://doi.org/10.18475/cjos.v53i2.a21.
  131. Vecchioni, L., Marrone, F., Chirco, P., Arizza, V., Tricarico, E., & Arculeo M. (2022). An update of the known distribution and status of Cherax spp. in Italy (Crustacea, Parastacidae). BioInvasions Records,11(4), 1045–1055. https://doi.org/10.3391/bir.2022.11.4.22.
  132. Veenstra, J. A. (2020). Gonadulins, the fourth type of insulin-related peptides in decapods. General and Comparative Endocrinology,296, 113528. https://doi.org/10.1016/j.ygcen.2020.113528.
  133. Wang, Y., Wang, B., Shao, X., Liu, M., Jiang, K., Wang, M., & Wang, L. (2020). A comparative transcriptomic analysis in late embryogenesis of the red claw crayfish Cherax quadricarinatus. Molecular genetics and genomics,295(2), 299–311. https://doi.org/10.1007/s00438-019-01621-4.
  134. Wang, Y., Wang, B., Shao, X., Liu, M., Jiang, K., Wang, M., & Wang, L. (2020). Identification and profiling of MicroRNAs during embryogenesis in the red claw crayfish Cherax quadricarinatus. Frontiers in physiology,11, 878. https://doi.org/10.3389/fphys.2020.00878.
  135. Wang, Y., Wang, B.J., Liu, M., Jiang, K.Y., Wang, M.Q., & Wang, L. (2020). The first identification of a C-type lectin gene (CqCTL) in Cherax quadricarinatus: sequence features and expression profiles. Invertebrate Survival Journal, 17(1), 108–116. https://doi.org/10.25431/1824-307X/isj.v0i0.108-116.
  136. Wei, M., Gu, Z.F., Pan, Z., Shi, Y. H., Huang, Z. W., Zheng, X., Liao, X. R., Li, J. N., Liu, C. S., & Wang, A. M. (2020). Effects of background color on growth, survival, body color, and inhabiting behavior distribution of Cherax quadricarinatus. Journal of Marine Sciences, 44, 60–65.
  137. Wei, M., Wang, A., Gu, Z., Liu, C., Li, J., Liao, X., & Pan, Z. (2021). Comparison of growth performance, carotenoid content, and temperature tolerance of two-colored strains of the red claw crayfish Cherax quadricarinatus. Journal of Shellfish Research, 40(2), 421–427. https://doi.org/10.2983/035.040.0214.
  138. Wei, Y., Cheng, S., Jia, Y., Chi, M., Liu, S., Zheng, J., & Gu, Z. (2022). Effects of nitrite on physiological indices and intestinal flora of parent Cherax quadricarinatus during overwintering. Journal of Shanghai Ocean University,31(1), 278–287. https://doi.org/10.12024/jsou.20201203256.
  139. Weiperth A., Gál B., Kuříková P., Langrová I., Kouba A., & Patoka J. (2019). Risk assessment of pet-traded decapod crustaceans in Hungary with evidence of Cherax quadricarinatus (von Martens, 1868) in the wild. North-Western Journal of Zoology,15(1), 42–47.
  140. Wen-ping, J., Shun, C., Yong-yi, J., Mei-li, C., Shi-li, L., Jian-bo, Z., Fei, Li., Yi-nuo, Li., Zhi-min, G., & Dan-li, W. (2022). A study on the effects of light intensity on juveniles of the red claw crayfish Cherax quadricarinatus. Aquaculture Research,53(18), 6454–6462. https://doi.org/10.1111/are.16115.
  141. Weyl, O. L. F., Nunes, A. L., Ellender, B. R., Weyl, P. S. R., Chilala, A. C., Jacobs, F. J., Murray-Hudson, M., & Douthwaite, R. J. (2017). Why suggesting australian redclaw crayfish Cherax quadricarinatus as biological control agents for snails is a bad idea. African Journal of Aquatic Science, 42(4), 325–327. https://doi.org/10.2989/16085914.2017.1414685.
  142. Wu, D. L., Rao, Q. X., Cheng, L., Lv, W. W., Zhao, Y. L., & Song, W. G. (2021). Cloning and characterisation of a Δ9 fatty acyl desaturase-like gene from the red claw crayfish (Cherax quadricarinatus) and its expression analysis under cold stress. Journal of Thermal Biology,102, 103122. https://doi.org/10.1016/j.jtherbio.2021.103122.
  143. Wu, D., Liu, Z., Yu, P., Huang, Y., Cai, M., Zhang, M., & Zhao, Y. (2020). Cold stress regulates lipid metabolism via AMPK signalling in Cherax quadricarinatus. Journal of thermal biology,92, 102693. https://doi.org/10.1016/j.jtherbio.2020.102693.
  144. Xu, X., Duan, H., Shi, Y., Xie, S., Song, Z., Jin, S., Li F., & Xiang, J. (2018). Development of a primary culture system for haematopoietic tissue cells from Cherax quadricarinatus and an exploration of transfection methods. Developmental and Comparative Immunology,88, 45–54. https://doi.org/10.1016/j.dci.2018.07.006.
  145. Xu, Y., Pan, H., Lu, M., Liu, Q., Shafique, L., Peng, J., Ahmed T., Wang R., Zhang H., Wang Q., & Zhu, P. (2021). Analysis of transcripts and splice isoforms in red claw crayfish (Cherax quadricarinatus) using single-molecule long-read sequencing. Aquaculture,541, 736828. https://doi.org/10.1016/j.aquaculture.2021.736828.
  146. Yau, S. M., & Lau, A. (2021). First record of the australian redclaw crayfish Cherax quadricarinatus (Von Martens, 1868) in Hong Kong, China. BioInvasions Records, 10(2), 369–377. https://doi.org/10.3391/bir.2021.10.2.15
  147. Yuan, J., Guo, J., Wang, H., Guo, A., Lian, Q., & Gu, Z. (2019). Acute toxicity of cypermethrin on the juvenile of red claw crayfish Cherax quadricarinatus. Chemosphere,237, 124468. https://doi.org/10.1016/j.chemosphere.2019.124468.
  148. Yuan, J., Zheng, Y., & Gu, Z. (2021). Effects of cypermethrin on the hepatic transcriptome and proteome of the red claw crayfish Cherax quadricarinatus. Chemosphere, 263, 128060. https://doi.org/10.1016/j.chemosphere.2020.128060.
  149. Zheng, J., Cai, L., Jia, Y., Chi, M., Cheng, S., Liu, S., Li, F., & Gu, Z. (2020). Identification and functional analysis of the doublesex gene in the redclaw crayfish, Cherax quadricarinatus. Gene expression patterns,37, 119129. https://doi.org/10.1016/j.gep.2020.119129.
  150. Zheng, J., Chen, L., Jia, Y., Chi, M., Li, F., Cheng, S., Liu, S., Liu, Y., & Gu Z. (2022). Genomic structure, expression, and functional characterization of the Fem-1 gene family in the redclaw crayfish, Cherax quadricarinatus. General and comparative endocrinology,316, 113961. https://doi.org/10.1016/j.ygcen.2021.113961.
  151. Zheng, J., Cheng, S., Jia, Y., Gu, Z., Li, F., Chi, M., Liu, S., & Jiang, W. (2019). Molecular identification and expression profiles of four splice variants of sex-lethal gene in Cherax quadricarinatus.Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,234, 26–33. https://doi.org/10.1016/j.cbpb.2019.05.002.
  152. Zheng-Bin, T., Saadiah, I., & Chaiw-Yee, T. (2022). Comparative study on the nutritional content and physical attributes of giant freshwater prawn (Macrobrachium rosenbergii) and redclaw crayfish (Cherax quadricarinatus) meats: preprint (Version 1) 07 June. Research Square. https://doi.org/10.21203/rs.3.rs-1695209/v1.
  153. Zhou, S., Jiang, K., Liu, M., Wang, B., & Wang, L. (2022). Exploration of the functional properties of red cuticle patch of redclaw crayfish (Cherax quadricarinatus) by histological and transcriptomic analysis. Aquaculture,561(15), 738624. https://doi.org/10.1016/j.aquaculture.2022.738624.
  154. Zhu, K., Yang, F., & Li, F. (2022). Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. Developmental and comparative immunology,132, 104407. https://doi.org/10.1016/j.dci.2022.104407.