Ribogospod. nauka Ukr., 2025; 1(71): 103-120
DOI: https://doi.org/10.61976/fsu2025.01.103
UDC 597.115:[639.371.06:639.3.06]
Genetic variability of Acipenser baerii (Brandt, 1869) by protein polymorphism in the process of domestication in industrial aquaculture
Т. Nahorniuk,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0002-4679-2993, Іnstitute of Fisheries of the NAAS, Kyiv
S. Pashko,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0009-0000-3849-7356, Institute of Fisheries of the NAAS, Kyiv
А. Mariutsa,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0001-5678-2660, Іnstitute of Fisheries of the NAAS, Kyiv
O. Tretiak,
This email address is being protected from spambots. You need JavaScript enabled to view it.
, ORCID ID 0000-0003-2300-9115, Institute of Fisheries of the NAAS, Kyiv
Purpose. To investigate the variability of the genetic structure of brood Siberian sturgeon by protein system loci during domestication under conditions of intensive aquaculture.
Methodology. The study of polymorphism of protein systems was carried out using polyacrylamide gel electrophoresis. To assess the genetic structure of the Siberian sturgeon group, we used the blood serum age-5-6 fish (n=30) grown using intensive technology in floating cages in the climatic conditions of the Forest-Steppe of Ukraine. We determined the distribution of allelic and genotypic frequencies at the transferrin (TF), albumin (ALB) and esterase (Est-1, Est-2, 3.1.1.1) loci. During artificial reproduction and subsequent cultivation of Siberian sturgeon, the main productive parameters were determined and abiotic environmental factors were analysed using generally accepted methods. Statistical processing of the obtained data was carried out using common methodological techniques.
Findings. Under favorable environmental conditions, high growth and survival rates of fish were observed at all stages of cultivation with positive dynamics of the development of their reproductive system. The genetic structure of a group of Siberian sturgeon individuals with an average weight of 3.60±0.11 kg was characterized by a high level of heterozygosity (94.2%). The value of Wright’s fixation index (FIS) varied in the range from -0.346 (at the ALB locus) to -0.741 (at the Est-2 locus) with a mean value of -0.491. A negative value of the fixation index (inbreeding coefficient) indicates the absence of inbreeding in the studied fish stock.
Originality. The genetic structure of the Siberian sturgeon breeding group was studied for the first time during the domestication process during intensive cultivation in floating cages in the climatic conditions of the Forest-Steppe of Ukraine.
Practical Value. The study results are aimed at improving breeding methods with sturgeons in aquaculture and improving the quality of brood sturgeon stocks.
Keywords: Siberian sturgeon, genetic structure, heterozygosity, protein systems, polymorphism, domestication.
REFERENCES
- Akimov, I. A. (Ed.). (2009). Chervona knyha Ukrainy. Tvarynnyi svit. Kyiv: Globalkonsaltynh.
- Kolman, R., & Robak, S. (Ed.). (2007). Akwakultura województwa warmińsko-mazurskiego elementem współpracy międzyregionalnej Polski, Litwy i obwodu Kaliningradzkiego FR. Olsztyn: IRS.
- Kolman, R., & Kapusta, A. (Ed.). (2008). Actual status and active protection of sturgeon fish populations endangered by extinction. Olsztyn: Instytut Rybactwa Srodladowego.
- Kolman, R., & Prusińska, M. (Ed.). (2012). Problemy produkcji materiału zarybieniowego ginących populacji ryb jesiotrowatych. Olsztyn: IRS.
- Bondarchuk, M. Ye., & Khartii, M. V. (2022). Svitovi tendentsii rozvytku rynku ikrianykh tovariv. Efektyvna ekonomika, 2. economy.nayka.com.ua. Retrieved from: http://www.economy.nayka.com.ua/?op=1&z=10014. https://doi.org/10.32702/2307-2105-2022.2.77.
- Pashko, S., Tretiak, O., Pashko, M., & Kolos, O. (2022). Fishery assessment of brood Siberian sturgeon (Acipenser baerii Brandt, 1869) cultivated in floating cages at natural water temperature of the forest steppe of Ukraine. Fisheries Science of Ukraine, 4(62), 23-40. https://doi.org/10.15407/fsu2022.04.023.
- Bekhit, Alaa El-Din. (Ed.). (2022). Fish Roe: Biochemistry, Products, and Safety. https://doi.org/10.1016/C2019-0-00711-X.
- Feng, Zhao, Ping, Zhuang, & Tao, Zhang. (Eds.). (2024). Environmental Biology of the Young Chinese Sturgeon. https://doi.org/10.1007/978-981-97-5648-3.
- Fopp-Bayat, D., Kolman, R., Tretyak, A. M., & Woznicki, P. (2008). Microsatellite DNA analysis of sterlet from five European river drainage areas. Actual status and active protection fish populations endangered by extinction: Іnternational scientific conference: proceed. Olsztyn: IRS, 223-234.
- Chandra, G., & Fopp-Bayat, D. (2021). Trends in aquaculture and conservation of sturgeons: a review of molecular and cytogenetic tools. Rev. Aquac., 13(1), 119-137. https://doi.org/10/1111/raq.12466.
- Pashko, M. M., Tarasiuk, S. I., Tretiak, O. M., Borysenko, N. O., & Bielikova, O. Yu. (2019). Do pytannia henetychnoi struktury pleminnykh hrup sterliadi (Acipenser ruthenus Linnaeus) v industrialnii akvakulturi. Rybohospodarska nauka Ukrainy, 3(49), 48-58. https://doi.org/10.15407/fsu2019.03.048.
- Chistiakov, D. A., Hetlemans, B., & Volckaert, F. A. M. (2006). Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture, 255(1–4), 1-29. https://doi.org/10.1016/j.aquaculture.2005.11.031.
- Bielikova, O. Y., Mariutsa, A. E., Mruk, A. I., Tarasjuk, S. I., & Romanenko, V. M. (2021). Genetic structure of rainbow trout Oncorhynchus mykiss (Salmoniformes, Salmonidae) from aquaculture by DNA-markers. Biosystems Giversity, 29(1), 28-32. https://doi.org/10.15421/012104.
- Mruk, A., Kucheruk, A., Bielikova O., & Čiampor, F. (2024). Current state of the European grayling (Thymallus thymallus L.) in Ukraine and conservation strategy for population support. A review. Journal for Nature Conservation, 81, 1-11. https://doi.org/10.1016/j.jnc.2024.126676.
- Mariutsa, А., Hrystyniak, I., Glushko, Yu., & Nahorniuk, Т. (2023). Evaluation of the genetic variability of pedigree stocks of Amur carp (Cyprinus rubrofuscus Lacépède, 1803). Fisheries Science of Ukraine, 3(65), 86-101. https://doi.org/10.15407/fsu2023.03.086.
- Mariutsa, А. Е., Nahorniuk, Т. А., & Hlushko, Y. М. (2023). Peculiarities of genetic variability of valuable fish species. Achievements and research prospects in animal husbandry and veterinary medicine: Scientific monograph. Riga, Latvia: Baltija Publishing. https://doi.org/10.30525/978-9934-26-316-3-18.
- Nafath-ul-Arab, Irfan Ahmad, Tasaduq, Hussain Shah, Oyas, Ahmed Asimi, Zarka, Yousuf, Asim, Iqbal, Sajad, H. Baba, Anees, Fatima, & Nakeer, Razak. (2020). Protein polymorphism in fishes. Journal of Entomology and Zoology Studies, 8(2), 62-66.
- Rehbein, H., & Lopata, A. L. (2011). Presence of parvalbumin in different tissues of three sturgeon species (Acipenser baerii, A. gueldenstaedtii, A. ruthenus). Journal of Applied Ichthyology, 27, 219-225. https://doi.org/10.1111/j.1439-0426.2010.01654.x.
- Ivanova, P., Chalova, V., Nikolova, L., & Georgiev, G. (2022). Comparative analysis of protein profile of Siberian sturgeon (Acipenser baerii), Russian sturgeon (Acipenser gueldenstaedtii), and hybrid (F1 Acipenser baerii × Acipenser gueldenstaedtii) grown on an aquaculture farm. Bulg. J. Agric. Sci., 28 (1), 119-128.
- Chaichi Nosrati, A., Modiri, L., Razi Jalali, M., Bahmani, M., & Khajeh, G. H. (2011). A comparative clinical analytic table for hemato-biochemical electrophoretic serum proteins constant variations of the Caspian Sea Sturgeons. The first patent for mature free living fishes: Huso huso, Acipenser persicus, A. gueldenstaedtii, A. nudiventris, A. stellatus, A. ruthenus, and A. baerii. Sturgeon Fishes and Their Future: The International Conference, 7.06–10.06.2011: proceed. Berdyansk, Ukraine.
- Epifanio, J. M., Koppelman, J. B., Nedbal, M. A., & Philipp, D. P. (1996). Geographic variation of paddlefish allozymes and mitochondrial DNA. Transactions of the American Fisheries Society, 125(4), 546-561. https://doi.org/10.1577/1548-8659(1996) 1252.3.CO;2.
- Tretyak, A., & Tarasyuk, S. (2011). Analysis of genetic structure of pedigree groups of paddlefish by individual genetic-biochemical systems. Fisheries Science of Ukraine, 1(15), 50-57.
- Ivanova, P., Dzhembekova, N., Kardjeva, V., Tsekov, A., & Raykov, V. (2017). Microsatellite and allozyme variations in starlet sturgeon wild broodstock and hatchery-produced offspring, used for restocking of lower Danube river. Journal of Aquaculture Engineering and Fisheries Research, 3(4), 199-206. https://doi.org/10.3153/JAEFR17022.
- Pashko, S., Pashko, M., Tretiak, O., & Kolos, O. (2021). An experience of obtaining mature eggs of the Siberian sturgeon (Acipenser baerii (Brandt, 1869)) in non-traditional period. Fisheries Science of Ukraine, 4(58), 29-39. https://doi.org/10.15407/fsu2021.04.029.
- Pashko, S., Tretiak, O., Pashko, M., Kolos, O., & Hankevych, B. (2023). The results of obtaining eggs from brood sturgeon (Acipenser baerii Brandt, 1869) at first maturity grown in industrial conditions. Fisheries Science of Ukraine, 4(66), 69-83. https://doi.org/10.61976/fsu2023.04.069.
- Pashko, S., Tretiak, O., Pashko, M., & Kolos, O. (2024). Peculiarities of cultivation of Siberian sturgeon (Acipenser baerii Brandt, 1869) breeders using floating cages in the climatic conditions of the forest steppe of Ukraine. Fisheries Science of Ukraine, 2(68), 40-57. https://doi.org/10.61976/fsu2024.02.040.
- Tretiak, O., Onyshchuk, Yu., Kolos, O., Hankevych, B., & Pashko, S. (2024). Ecological aspects of using heat waste water of energy facilities for sturgeon (Acipenseridae) aquaculture. Fisheries Science of Ukraine, 3(69), 42-62. https://doi.org/10.61976/fsu2024.03.042.
- Grubinko, V. V., Kurant, V. Z., Khomenchuk V. O., Byiak, V. Ya., & Syniuk, Yu. V. (2010). Osoblyvosti bilkovogo skladu plazmy krovi khrebetnykh: evolyutsiyno-ekologichnyi aspect. Biologiya tvaryn, 12, 1, 64-67.
- Shaklee, J. B., Allendorf, F. W., Morizol, D. C., & Whitt, G. S. (1990). Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society, 119, 2-15. https://doi.org/10.1577/1548-8659(1990)119<0002:GNFPLI>2.3.CO;2
- Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences, 121, 404-408. https://doi.org/10.1111/j.1749-6632/1964/tb14213.x.
- Trofymenko, O. L., Hyl, M. I., & Smetana, O. Yu. (2018). Henetyka populiatsii – Genetics of populations. Mykolaiv: Helvetyka, 254.
- Wright, S. (1951). The genetical structure of populations. Ann. Eugenics, 15(4), 323-354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x.
- Nabyvanets, B. Y., Osadchyi, V. I., Osadcha, N. M., & Nabyvanets, Yu. B. (2007). Analitychna khimiia poverkhnevykh vod. Kyiv: Naukova dumka.
- Arsan, O. M., Davydov, O. A., Diachenko, T. A., et al. (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv: Lohos.
- Voda rybohospodarskykh pidpryiemstv. Zahalni vymohy ta normy. (2006). Standart minahropolityky Ukrainy. Kyiv: Ministerstvo ahrarnoi polityky Ukrainy.
- Pylypenko, Yu. V., Shevchenko, P. G., Tsedyk, V. V., & Kornienko V. O. (2017). Metody ihtiolohichnych doslidzhen. Kherson: Oldi-Plus.
- Ievtushenko, M. Yu. (2013). Metodyka doslidzhen u rybnytstvi. Kyiv.