Ribogospod. nauka Ukr., 2023; 4(66): 114-140
DOI: https://doi.org/10.61976/fsu2023.04.114
UDC [639.3.043.13:636.087.74]:639.371.52

Substantiation and prospects of using insects as a source of protein in fish feeds (a review)

O. Deren, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of the NAAS, Kyiv
M. Fedorenko, This email address is being protected from spambots. You need JavaScript enabled to view it. , State institution «Methodological and technological center of aquaculture», Kyiv

Purpose. Analysis of the prospects and experience of using insects as an alternative source of animal protein in aquaculture. Scientific and practical substantiation of the introduction of black soldier fly (Hermetia illucens) into fish feeds. Evaluation of the effeciency of the use of insect protein in solving the issues of sustainable development of aquaculture.

Findings. World resources and trends in the use of animal protein in feed production have been characterized. The biological and functional characteristics, as well as the quality and safety of animal protein have been analyzed.

Insect protein is considered a non-traditional feed component for Ukrainian aquaculture. It should be noted that the use of insect protein in feeding different fish species requires special approaches, in accordance with the biological needs of their body and the stage of ontogenesis. Also, the efficiency of the use of insect protein in fish feeds depends on the methodological approaches of its introduction, the amount of use, as well as the feed component replaced in the basic diet.

On the example of the results of scientific studies on the introduction of black soldier fly (Hermetia illucens) in fish feeds, promising directions and methods of using this insect species have been identified. The positive effect of experimental feeding on productive parameters, feed conversion, quality and safety of farmed fish products have been noted.

The limiting factors for increasing insect protein production in accordance with technological parameters and biological characteristics have been analyzed in detail.

It is noted that the industrial production of insects can be a solution to the problem of processing industrial and organic waste as a result of their use for nutrition. The feasibility and prospects of using insect protein in aquaculture in Ukraine have been outlined.

The authors have analyzed modern sources of professional scientific literature in accordance with the study of the state and prospects of using traditional and non-traditional sources of animal protein in fish feeds. Using the example of the black soldier fly, the authors characterize the efficiency of the use of insect protein in aquaculture, its biological characteristics and technological parameters of production.

Practical value. The literature review covers modern approaches and prospects for optimizing aquaculture. It can be used by fish farming specialists for scientific studies and practical experimental developments.

Keywords: animal protein, insect protein, black soldier fly, Hermetia illucens, fish feeds, non-traditional feed components, tenological parameters, biological characteristics, aquaculture.


  1. Tacon, A. G. J. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Rev. Fish. Sci. Aquacult., 28, 43-56. https://doi.org/10.1080/23308249.2019.1649634.
  2. Edwards, P. (2015). Aquaculture environment interactions: past, present and likely future trends. Aquaculture, 447, 2-14. https://doi.org/10.1016/j.aquaculture.2015.02.001.
  3. Food and Agriculture Organization. (2014). The state of world fisheries and aquaculture: Opportunities and challenges. Rome: Food Agric. Organ. United Nations, 40–41. www.fao.org. Retrieved from: http://www.fao.org/3/a-i3720e.pdf.
  4. Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1 (5), 301-308. https://doi.org/10.1038/s43016-020-0078-x.
  5. Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A. P., & Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, 106 (36), 15103-15110. https://doi.org/10.1073/pnas.0905235106.
  6. Albert, G. J. Tacon, & Marc, Metian (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285 (1–4), 146-158. https://doi.org/10.1016/j.aquaculture.2008.08.015.
  7. Oliva-Teles, A., Enes, P., & Peres, H. (2015). 8–Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. Woodhead Publishing Series in Food Science, Technology and Nutrition, Feed and Feeding Practices in Aquaculture. Woodhead Publishing, 203-233. https://doi.org/10.1016/B978-0-08-100506-4.00008-8.
  8. Rana, K. J., Siriwardena, S., & Hasan, M. R. (2009). Impact of rising feed ingredient prices on aquafeeds and aquaculture (No. 541). Rome: FAO Fisheries and Aquaculture Technical Paper.
  9. Castell, J. D., Conklin, D. E., Craigie, J. S., Lall, S. P., & Norman-Boudreau, K. (1986). Aquaculture nutrition. Realisment Aquaculture, achievements, constraints, perspectives. Belgium: European Aquaculture Soc., 251-308.
  10. Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704.
  11. Oonincx, D. G., & De Boer, I. J. (2012). Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. PloS One, 7 (12), 51145. https://doi.org/10.1371/journal.pone.0051145.
  12. Sogari, G., Bellezza Oddon, S., Gasco, L., van Huis, A., Spranghers, T., & Mancini, S., (2023). Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal,17 (2), 100904. https://doi.org/10.1016/j.animal.2023.100904.
  13. Veldkamp, T., Van Duinkerken, G., van Huis, A., Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Van Boekel, T. (2012). Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study = Insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie (No. 638). Wageningen: UR Livestock Research.
  14. Sogari, Giovanni, Amato, Mario, Palmieri, Rossella, Saadoun, Jasmine Hadj, Formici, Giulia, Verneau, Fabio, & Mancini, Simone (2023).The future is crawling: Evaluating the potential of insects for food and feed security. Current Research in Food Science, 6, 100504. https://doi.org/10.1016/j.crfs.2023.100504.
  15. European Commission. (2017). Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Off. J. Eur. Union, 138, 92-116.
  16. Glencross, B. D., Booth, M., & Allan, G. L. (2007). A feed is only as good as its ingredients - A review of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutrition, 13 (1), 17-34. https://doi.org/10.1111/j.1365-2095.2007.00450.x.
  17. Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., & Caruso, G. (2018). Feeds for the aquaculture sector: Current situation and alternative sources. Berlin, Germany: Springer International Publishing, 1-28. https://doi.org/10.1007/978-3-319-77941-6_1.
  18. Bukkens, S. G. F. (1997). The nutritional value of edible insects. Ecology of Food and Nutrition, 36, 287-319. https://doi.org/10.1080/03670244.1997.9991521.
  19. Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/j.ifset.2012.11.005.
  20. Barroso, F. G., de Haro, C., Sánchez-Muros, M.-J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422-423, 193-201. https://doi.org/10.1016/j.aquaculture.2013.12.024.
  21. Mingxing, Lu, Chenxu, Zhu, Smetana, Sergiy, Ming, Zhao, Haibo, Zhang, Fang, Zhang, & Yuzhou, Du (2024). Minerals in edible insects: A review of content and potential for sustainable sourcing. Food Science and Human Wellness, 13 (1), 65-74. https://doi.org/10.26599/FSHW.2022.9250005.
  22. Davidowitz, Goggy (2021). Habitat-centric versus species-centric approaches to edible insects for food and feed. Current Opinion in Insect Science, 48, 37-43. https://doi.org/10.1016/j.cois.2021.09.006.
  23. Yuzer, Alfiko, Dizhi, Xie, Retno, Tri Astuti, Joey, Wong, & Le, Wang (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquaculture and Fisheries, 7 (2), 166-178. https://doi.org/10.1016/j.aaf.2021.10.004.
  24. Gasco, Laura, Biancarosa, Irene, & Liland, Nina S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, 67-79. https://doi.org/10.1016/j.cogsc.2020.03.003.
  25. Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001.
  26. Makkar, H. P., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal feed science and technology, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008.
  27. Heuzé, V., & Tran, G. (2013). Locust meal, locusts, grasshoppers and crickets.Feedipedia. org. A programme by INRA, CIRAD, AFZ and FAO. Retrieved from:feedipedia. org.
  28. Boscolo, W. R., Hayashi, C., Meurer, F., & Soares, C. M. (2001). Fish, meat and bone, poultry by-products and silkworm meals as attractive in diets for Nile tilapia (Oreochromis niloticus) fingerlings. Revista brasileira de zootecnia, 30, 1397-1402 https://doi.org/10.1590/S1516-35982001000600002.
  29. Achionye-Nzeh, C. G., & Ngwudo, O. S. (2021). Growth response of Clarias anguillaris fingerlings fed larvae of Musca domestica and soyabean diet in the laboratory. Bioscience Research Journal, 15 (3), 221-223.
  30. Rangacharyulu, P. V., Giri, S. S., Paul, B. N., Yashoda, K. P., Rao, R. J., Mahendrakar, N. S., ... & Mukhopadhyay, P. K. (2003). Utilization of fermented silkworm pupae silage in feed for carps. Bioresource technology, 86 (1), 29-32. https://doi.org/10.1016/S0960-8524(02)00113-X.
  31. Ossey, Y. B., Koumi, A. R., Koffi, K. M., Atse, B. C., & Kouame, L. P. (2012). Use of soybean, bovine brain and maggot as sources of dietary protein in larval Heterobranchus longifilis (Valenciennes, 1840). J. Anim. Plant Sci, 15 (1), 2099-2108.
  32. Stamer, A., Neidig, R., Wessels, S., & Hörstgen-Schwark, G. (2007). Protein concentrates for animal feedstuff derived from fly-massproduction: hermetia-meal as an alternative to fishmeal. Deutscher Tropentag. Book of Abstracts. Witzenhausen.
  33. Maulu, Sahya, Langi, Sandra, Hasimuna, Oliver J., Missinhoun, Dagoudo, Munganga, Brian P., Hampuwo, Buumba M., Ndakalimwe, Naftal Gabriel, Mabrouk, Elsabagh, Hien Van, Doan, Zulhisyam, Abdul Kari, & Mahmoud, A. O. Dawood. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition, 11, 334-349. https://doi.org/10.1016/j.aninu.2022.07.013.
  34. Alegbeleye, W. O., Obasa, S. O., Olude, O. O., Otubu, K., & Jimoh, W. (2012). Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquaculture Research, 43 (3), 412-420. https://doi.org/10.1111/j.1365-2109.2011.02844.x.
  35. Ng, W. K., Liew, F. L., Ang, L. P., & Wong, K. W. (2001). Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research, 32, 273-280. https://doi.org/10.1046/j.1355-557x.2001.00024.x.
  36. Antonopoulou, Efthimia, Nikouli, Eleni, Piccolo, Giovanni, Gasco, Laura, Gai, Francesco, Chatzifotis, Stavros, Mente, Eleni, & Ar Kormas, Konstantinos (2019). Reshaping gut bacterial communities after dietary Tenebrio molitor larvae meal supplementation in three fish species. Aquaculture, 503, 628-635. https://doi.org/10.1016/j.aquaculture.2018.12.013.
  37. Gasco, L., Gai, F., Piccolo, G., Rotolo, L., Lussiana, C., Molla, P., & Chatzifotis, S. (2014). Substitution of fishmeal by Tenebrio molitor meal in the diet of Dicentrarchus labrax juveniles. Insects to Feed the World: 1st International conference. Ede-Wageningen, 70.
  38. Piccolo, G., Marono, S., Gasco, L., Iannaccone, F., Bovera, F., & Nizza, A. (2014). Use of Tenebrio molitor larvae meal in diets for Gilthead seabream Sparus aurata juveniles. Insects to Feed the World: 1st International conference. Ede-Wageningen, 68.
  39. St‐Hilaire, S., Sheppard, C., Tomberlin, J. K., Irving, S., Newton, L., & McGuire, M. A., et al. (2007). Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. Journal of the world aquaculture society, 38 (1), 59-67. https://doi.org/10.1111/j.1749-7345.2006.00073.x.
  40. Sealey, W. M., Gaylord, T. G., Barrows, F. T., Tomberlin, J. K., McGuire, M. A., Ross, C., & St‐Hilaire, S. (2011). Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. Journal of the World Aquaculture Society, 42 (1), 34-45. https://doi.org/10.1111/j.1749-7345.2010.00441.x.
  41. Cardinaletti, G., Randazzo, B., Messina, M., Zarantoniello, M., Giorgini, E., & Zimbelli, A., et al. (2019). Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 9 (5), 251. https://doi.org/10.3390/ani9050251.
  42. Md. Sakhawat, Hossain, Femi J., Fawole, Shyam Narayan, Labh, Brian C., Small, Ken, Overturf, &Vikas, Kumar (2021). Insect meal inclusion as a novel feed ingredient in soy-based diets improves performance of rainbow trout (Oncorhynchus mykiss). Aquaculture, 544, 737096. https://doi.org/10.1016/j.aquaculture.2021.737096.
  43. Kroeckel, S., Harjes, A. G., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364, 345-352. https://doi.org/10.1016/j.aquaculture.2012.08.041.
  44. Yubing, Chen, Rebecca, Lawson, Umesh, Shandilya, Marcia A., Chiasson, Niel A., Karrow, & David, Huyben (2023). Dietary protein, lipid and insect meal on growth, plasma biochemistry and hepatic immune expression of lake whitefish (Coregonus clupeaformis). Fish and Shellfish Immunology Reports, 5, 100111, https://doi.org/10.1016/j.fsirep.2023.100111.
  45. Adeoye, A. A., Akegbejo‐Samsons, Y., Fawole, F. J., & Davies, S. J. (2020). Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. Journal of the World Aquaculture Society, 51 (4), 1024-1033. https://doi.org/10.1111/jwas.12691.
  46. Lock, E. J., Arsiwalla, T., & Waagbø, R. (2014). Insect meal: A promising source of nutrients in the diet of Atlantic salmon (Salmo salar). Insects to Feed the World: 1st International conference. Ede-Wageningen, 14-17.
  47. Linn, Haug Eide, Sérgio D. C., Rocha, Byron, Morales-Lange, Raoul Valentin, Kuiper, Ole Bendik, Dale, Brankica, Djordjevic, Jamie Marie, Hooft, & Margareth, Øverland (2024). Black soldier fly larvae (Hermetia illucens) meal is a viable protein source for Atlantic salmon (Salmo salar) during a large-scale controlled field trial under commercial-like conditions. Aquaculture, 579, 740194. https://doi.org/10.1016/j.aquaculture.2023.740194.
  48. Rui, Magalhães, Antonio, Sánchez-López, Renato Silva, Leal, Silvia, Martínez-Llorens, Aires, Oliva-Teles, & Helena, Peres (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476, 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021.
  49. Mohsen, Abdel-Tawwab, Riad H., Khalil, Ahmed A., Metwally, Medhat S., Shakweer, Mohamed A., Khallaf, & Hany M. R., Abdel-Latif (2020). Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture, 522, 735136. https://doi.org/10.1016/j.aquaculture.2020.735136.
  50. Anedda, Roberto, Melis, Riccardo, Palomba, Antonio, Ilaria, Vitangeli, Grazia, Biosa, Angela, Braca, Micaela, Antonini, Federico, Moroni, Simona, Rimoldi, Genciana, Terova, & Daniela, Pagnozzi (2023). Balanced replacement of fish meal with Hermetia illucens meal allows efficient hepatic nutrient metabolism and increases fillet lipid quality in gilthead sea bream (Sparus aurata), Aquaculture, 576, 739862. https://doi.org/10.1016/j.aquaculture.2023.739862.
  51. Truzzi, C., Girolametti, F., Annibaldi, A., Zarantoniello, M., Olivotto, I., Riolo, P., Tulli, F., & Illuminati, S. (2023). Insect-based aquafeeds modulate the fatty acid profile of zebrafish: A comparison on the different life stages. Animal Feed Science and Technology, 305, 115761. https://doi.org/10.1016/j.anifeedsci.2023.115761.
  52. Bruni, Leonardo, Pastorelli, Roberta, Viti, Carlo, Gasco, Laura, & Parisi, Giuliana, (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487, 56-63. https://doi.org/10.1016/j.aquaculture.2018.01.006.
  53. Renna, M., Schiavone, A., Gai, F. et al. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J Animal Sci Biotechnol., 8, 57. https://doi.org/10.1186/s40104-017-0191-3.
  54. Vlastimil, Stejskal, Hung, Quang Tran, Markéta, Prokesová, Mahyar, Zare, Tatyana, Gebauer, Tomas, Policar, Christian, Caimi, Francesco, Gai, & Laura, Gasco (2023). Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability. Animal Nutrition, 12, 7-19. https://doi.org/10.1016/j.aninu.2022.06.022.
  55. Bondari, K., & Sheppard, D. C. (1981). Soldier fly larvae as feed in commercial fish production. Aquaculture, 24, 103-109. https://doi.org/10.1016/0044-8486(81)90047-8
  56. Aniebo, A. O., Odukwe, C. A., Ebenebe, C. I., Ajuogu, P. K., Owen, O. J., & Onu, P. N. (2011). Effect of housefly larvae (Musca domestica) meal on the carcass and sensory qualities of the Mud catfish (Clarias gariepinus). Advances in food and energy security, 1 (5), 24-28.
  57. Femi J., Fawole, Shyam N., Labh, Md Sakhawat, Hossain, Ken, Overturf, Brian C., Small, Thomas L., Welker, Ronald W., Hardy, & Vikas, Kumar, (2021). Insect (black soldier fly larvae) oil as a potential substitute for fish or soy oil in the fish meal-based diet of juvenile rainbow trout (Oncorhynchus mykiss). Animal Nutrition, 7 (4), 1360-1370. https://doi.org/10.1016/j.aninu.2021.07.008.
  58. Rodrigues, Daniela P., Calado, Ricardo, Pinho, Marisa, Domingues, M. Rosário, Vázquez, José Antonio, & Ameixa, Olga M. C. C. (2022). Bioconversion and performance of Black Soldier Fly (Hermetia illucens) in the recovery of nutrients from expired fish feeds. Waste Management, 141, 183-193. https://doi.org/10.1016/j.wasman.2022.01.035.
  59. Kannan, Mohan, Durairaj Karthick, Rajan, Thirunavukkarasu, Muralisankar, Abirami Ramu, Ganesan, Palanivel, Sathishkumar, & Nagarajan, Revathi (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 553, 738095. https://doi.org/10.1016/j.aquaculture.2022.738095.
  60. Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security(No. 171). Rome: Food and agriculture organization of the United Nations.
  61. Ramos‐Elorduy, Julieta (1997). Insects: A sustainable source of food? Ecology of Food and Nutrition, 36 (2-4), 247,276. https://doi.org/10.1080/03670244.1997.9991519.
  62. Newton, G. L., Sheppard, D. C., Watson, D. W., Burtle, G. J., Dove, C. R., Tomberlin, J. K., & Thelen, E. E. (2005). The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. Symposium on the state of the science of Animal Manure and Waste Management, 1, 57.
  63. Diener, S., Zurbrügg, C., & Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res., 27 (6), 603-610. https://doi.org/10.1177/0734242X09103838.
  64. Van der Spiegel, M., Noordam, M. Y., & Van der Fels‐Klerx, H. J. (2013). Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Comprehensive reviews in food science and food safety, 12 (6), 662-678. https://doi.org/10.1111/1541-4337.12032.
  65. Ogunji, J. O., Nimptsch, J., Wiegand, C., & Schulz, C. (2007). Evaluation of the influence of housefly maggot meal (magmeal) diets on catalase, glutathione S-transferase and glycogen concentration in the liver of Oreochromis niloticus fingerling. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147 (4), 942-947. https://doi.org/10.1016/j.cbpa.2007.02.028.
  66. Stamer, A., Wessels, S., Neidigk, R., & Hoerstgen-Schwark, G. (2014). Black soldier fly (Hermetia illucens) larvae-meal as an example for a new feed ingredients’ class in aquaculture diets. Organic World Congress: 4 th ISOFAR Scientific Conference ‘Building Organic Bridges’. Istanbul, Turkey.
  67. Hawkey, K. J., Lopez-Viso, C., Brameld, J. M., Parr, T., & Salter, A. M. (2021). Insects: a potential source of protein and other nutrients for feed and food. Annual review of animal biosciences, 9, 333-354. https://doi.org/10.1146/annurev-animal-021419-083930.
  68. Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., & Rawski, M., et al. (2019). Insect meals in fish nutrition. Rev. Aquac., 11, 1080-1103. https://doi.org/10.1111/raq.12281.
  69. Lock, E. J., Biancarosa, I., & Gasco, L. (2018). Insects as raw materials in compound feed for aquaculture. Edible insects in sustainable food systems, 263-276. https://doi.org/10.1007/978-3-319-74011-9_16.
  70. St‐Hilaire, S., Cranfill, K., McGuire, M. A., Mosley, E. E., Tomberlin, J. K., & Newton, L., et al. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega‐3 fatty acids. Journal of the World Aquaculture Society, 38 (2), 309-313. https://doi.org/10.1111/j.1749-7345.2007.00101.x.
  71. DeFoliart, G. R. (1991). Insect fatty acids: similar to those of poultry and fish in their degree of unsaturation, but higher in the polyunsaturates. The Food Insects Newsletter, 4 (1), 1-4. https://doi.org/10.1016/0261-2194(92)90020-6.
  72. Fabrikov, Dmitri, Barroso, Fernando G., Sánchez-Muros, M. José, Hidalgo, M. Carmen, Gabriel, Cardenete, Cristina, Tomás-Almenar, Federico, Melenchón, & Jose Luis, Guil-Guerrero (2021). Effect of feeding with insect meal diet on the fatty acid compositions of sea bream (Sparus aurata), tench (Tinca tinca) and rainbow trout (Oncorhynchus mykiss) fillets. Aquaculture, 545, 737170. https://doi.org/10.1016/j.aquaculture.2021.737170.
  73. Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology, 26, 105-115. https://doi.org/10.1002/zoo.20123.
  74. Sánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: a review. Journal of Cleaner Production, 65, 16-27. https://doi.org/10.1016/j.jclepro.2013.11.068.
  75. Zainol Abidin, N. A., Kormin, F., Zainol Abidin, N. A., Mohamed Anuar, N. A. F., & Abu Bakar, M. F. (2020). The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources. International Journal of Molecular Sciences, 21 (14), 4978. https://doi.org/10.3390/ijms21144978.
  76. Rimoldi, Simona, Ceccotti, Chiara, Brambilla, Fabio, Faccenda, Filippo, Antonini, Micaela, & Terova, Genciana, (2023). Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture, 567, 739256. https://doi.org/10.1016/j.aquaculture.2023.739256.
  77. Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., & Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26 (2), 628-631. https://doi.org/10.1016/j.foodcont.2012.02.013.
  78. Fasakin, E. A., Balogun, A. M., & Ajayi, O. O. (2003). Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquaculture Research, 34 (9), 733-738. https://doi.org/10.1046/j.1365-2109.2003.00876.x.
  79. Sampathkumar, Kaarunya, Hong, Yu, & Say Chye Joachim, Loo (2023). Valorisation of industrial food waste into sustainable aquaculture feeds. Future Foods, 7, 100240. https://doi.org/10.1016/j.fufo.2023.100240.