pdf35

Ribogospod. nauka Ukr., 2023; 3(65): 157-168
DOI: https://doi.org/10.15407/fsu2023.03.157
UDC 016:[597.554.2:639.371.5]

Black carp (Mylopharyngodon piceus Richardson, 1846). Thematic bibliography

Ir. Hrytsynyak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
T. Shvets, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv

Purpose. Forming a thematic bibliographic list of English-language publications on molecular-genetic, immunological, physiological-biochemical, as well as ecological and individual biological features of black carp (Mylopharyngodon piceus L.).

Methods. The complete and selective methods were applied in the process of the systematic search. The bibliographic core have been consisted of English-language scientific publications from resources available to users of the Institute of Fisheries NAAS Scientific Library.

Results. There was composed the thematic list of publications with a total quantity of 89 sources covering the time interval from 1995 to 2023,
and highlighting the biological and ecological characteristics of a representative of the Cyprinids, the black carp, as well as considering the issue of its physiological, biochemical, genetic, and immunological features. The literary sources are arranged in alphabetical order by author or title, and described according to DSTU 8302:2015 “Information and documentation. Bibliographic reference. General principles and rules of composition”, with the amendments (code UKND 01.140.40), as well as in accordance with the requirements of APA style — international standard of references.

Practical value. The list may be useful for scientists, practitioners, students, whose area of interests includes issues of biological research of Cyprinids, in particular black carp (Mylopharyngodon piceus L.).

Key words: black carp, immunology, genetic indicators, biochemical indicators.

REFERENCE

  1. Yunfan, He, et al. (2023). ATG16L1 negatively regulates MAVS-mediated antiviral signaling in black carp Mylopharyngodon piceus.Fish & Shellfish Immunology, 136, 108706.
  2. Ben-Ami, Frida, & Heller, Joseph. (2001). Biological Control of Aquatic Pest Snails by the Black Carp Mylopharyngodon piceus. Biological Control, 22, 2, 131-138.
  3. Hongbing, Fan, et al. (2016). Quality Changes and Biogenic Amines Accumulation of Black Carp (Mylopharyngodon piceus) Fillets Stored at Different Temperatures. Journal of Food Protection, 79, 4, 635-645.
  4. Gidmark, N. J., Konow, N., Lopresti, E., & Brainerd, E. L. (2013). Bite force is limited by the force-length relationship of skeletal muscle in black carp, Mylopharyngodon piceus. Biol Lett, 9(2), 20121181.
  5. Chanyuan, Wang, et al. (2021). Black carp IKKε collaborates with IRF3 in the antiviral signaling. Fish & Shellfish Immunology, 118, 160-168.
  6. Can, Yang, et al. (2019). Black carp IRF5 interacts with TBK1 to trigger cell death following viral infection. Developmental & Comparative Immunology, 100, 103426.
  7. Can, Cai, Ji, Liu, Yaqi, Tan, Jing, Wei, Xiao, Yang, Jun, Xiao, & Hao, Feng. (2020). Black carp NAP1 positively regulates MDA5-mediated antiviral signaling during the innate immune activation. Developmental & Comparative Immunology, 107, 103659.
  8. Yuanyuan, Jiang, et al. (2019). Black carp PRMT6 inhibits TBK1-IRF3/7 signaling during the antiviral innate immune activation. Fish & Shellfish Immunology, 93, 108-115.
  9. Li, Q., Xie, L., Pan, J., He, Y., Wang, E., Wu, H., Xiao, J., & Feng, H. (2023). Black carp RIOK3 suppresses MDA5-mediated IFN signaling in the antiviral innate immunity. Dev Comp Immunol, 16, 105059.
  10. Xinchi, Xie, et al. (2020). Black carp RIPK1 negatively regulates MAVS-mediated antiviral signaling during the innate immune activation. Developmental & Comparative Immunology, 109, 103726.
  11. Jun, Yan, et al. (2023). Black carp RNF5 inhibits STING/IFN signaling through promoting K48-linked ubiquitination and degradation of STING. Developmental & Comparative Immunology, 145, 104712.
  12. Liang, Lu, et al. (2017). Black carp STING functions importantly in innate immune defense against RNA virus. Fish & Shellfish Immunology, 70, 13-24.
  13. Ziqi, Zou, et al. (2019). Black carp TAB1 up-regulates TAK1/IRF7/IFN signaling during the antiviral innate immune activation. Fish & Shellfish Immunology, 89, 736-744.
  14. Wanzhen, Li, Yingyi, Cao, Zhaoyuan, Chen, Yaqi, Tan, Yuhan, Dai, Jing, Wei, Jun, Xiao, & Hao, Feng. (2021). Black carp TRADD suppresses MAVS/IFN signaling during the innate immune activation. Fish & Shellfish Immunology, 111, 83-93.
  15. Jun, Yan, et al. (2020). Black carp TRAFD1 restrains MAVS-mediated antiviral signaling during the innate immune activation. Fish & Shellfish Immunology, 103, 66-72.
  16. Yingyi, Cao, et al. (2021). Black carp TUFM collaborates with NLRX1 to inhibit MAVS-mediated antiviral signaling pathway. Developmental & Comparative Immunology, 122, 104134.
  17. Xue, T., Yu, M., Pan, Q., Wang, Y., Fang, J., Li, L., Deng, Y., Chen, K., Wang, Q., & Chen, T. (2017). Black carp vasa identifies embryonic and gonadal germ cells. Dev Genes Evol, 227(4), 231-243.
  18. Fu, J., He, C., Xia, B., Li, Y, Feng, Q., Yin, Q., Shi, X., Feng, X., Wang, H., & Yao, H. (2016). c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp (Mylopharyngodon piceus). Sci Rep., 22, 6, 23509.
  19. Gur, G., Melamed, P., Gissis, A., & Yaron, Z. (2000). Changes along the pituitary-gonadal axis during maturation of the black carp, Mylopharyngodon piceus. J Exp Zool, 286(4), 405-13.
  20. Wang, Y., Wu, H., Shi, W., Huang, H., Shen, S., Yang, F., & Chen, S. (2021). Changes of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming. J Sci Food Agric, 101(10), 4033-4041.
  21. Shu Jiang, et al. (2017). Characterization of the black carp TRAF6 signaling molecule in innate immune defense. Fish & Shellfish Immunology, 67, 147-158.
  22. Rothbard, Shmuel, et al. (1995). Chromosomeset manipulation in the black carp, Mylopharyngodon piceus. Aquaculture, 137, 1-4, 156-157.
  23. Liang, Chen, et al. (2023). Cloning and characterization of type IV interferon from black carp Mylopharyngodon piceus.Developmental & Comparative Immunology, 140, 104614.
  24. Jiahua, Zhang, et al. (2023). Cloning, prokaryotic expression, purification, and functional verification of the insulin gene in black carp (Mylopharyngodon piceus). Aquaculture and Fisheries, 8, 18-25.
  25. Bao, S. C., Xie, N., Xu, X. Y., Su, Y. H., Bao, T. J., Shen, Y. B., & Li, J. L. (2020). Complete mitochondrial genome of gray black carp Mylopharyngodon piceus). Mitochondrial DNA B Resour, 13, 5(3), 2076-2077.
  26. Wang, C., Wang, J., Yang, J., Lu, G., Song, X., Chen, Q., Xu, J., Yang, Q., & Li, S. (2012). Complete mitogenome sequence of black carp (Mylopharyngodon piceus) and its use for molecular phylogeny of leuciscine fishes. Mol Biol Rep, 39(5), 6337-6342. 
  27. Jiamin Guo, Anqi Wang, Siqi Mao, Xiaoyan Xu, Jiale Li, Yubang Shen. (2022). Construction of high-density genetic linkage map and QTL mapping for growth performance in black carp (Mylopharyngodon piceus). Aquaculture, 549, 737799.
  28. Guancheng, Liao, et al. (2022). DAK inhibits MDA5-mediated signaling in the antiviral innate immunity of black carp. Developmental & Comparative Immunology, 126, 104255.
  29. Yankai, Liu, et al. (2022). DDX19 inhibits RLR/IRF3 mediated type I interferon signaling of black carp Mylopharyngodon piceus by restricting IRF3 from entering nucleus. Aquaculture, 553, 738087.
  30. Qin, W., Liu, Y., Xiao, J., Chen, N., Tu, J., Wu, H., Zhang, Y., & Feng, H. (2023). DDX23 of black carp negatively regulates MAVS-mediated antiviral signaling in innate immune activation. Dev Comp Immunol, 146, 104727.
  31. Tongtong, Wang, Shanshan, Jin, Ruoxuan, Lv, Yuting, Meng, Guozhong, Li, Yuxing, Han, & Qiusheng, Zhang. (2023). Development of an indirect ELISA for detection of the adaptive immune response of black carp (Mylopharyngodon piceus). Journal of Immunological Methods, 521, 113550.
  32. Qi, Zhang, et al. (2021). Diversity and succession of the microbial community and its correlation with lipid oxidation in dry-cured black carp (Mylopharyngodon piceus) during storage. Food Microbiology, 98, 103686.
  33. Nguyen, Manh Hung, et al. (2015). Does hardness of food affect the development of pharyngeal teeth of the black carp, Mylopharyngodon piceus (Pisces: Cyprinidae)? Biological Control, 80, 156-159.
  34. Wang, J. H., Wang, T., Ye, T. H., & et al. (2022). Effects of dietary berberine on growth performance, lipid metabolism, antioxidant capacity and lipometabolism-related genes expression of AMPK signaling pathway in juvenile black carp (Mylopharyngodon piceus) fed high-fat diets. Fish Physiol Biochem, 23.
  35. Xiaowei, Jia, Pengcheng, Qian, Chenglong, Wu, Yuanyuan, Xie, Wenxue, Yang, Rui, Song, Jiaojiao, Wu, & Jinyun, Ye. (2022). Effects of dietary pantothenic acid on growth, antioxidant ability and innate immune response in juvenile black carp. Aquaculture Reports, 24, 101131.
  36. Wu, C., Lu, B., Wang, Y., Jin, C., Zhang, Y., & Ye, J. (2020). Effects of dietary vitamin D3 on growth performance, antioxidant capacities and innate immune responses in juvenile black carp Mylopharyngodon piceus. Fish Physiol Biochem, 46(6), 2243-2256.
  37. el-Deeb, F. A., & Ismail, N. M. (2004). Feeding ecology and food composition of the black carp Mylopharyngodon piceus and the grass carp Ctenopharyngodon idella inhabiting the fish pond of Al-Abbassa fish hatchery with emphasis given to vector snails. J Egypt Soc Parasitol, 34(2), 643-57.
  38. Xue, T., Wang, Y. Z., Pan, Q. H., Wang, Q., Yuan, J. F., & Chen, T. S. (2018). Establishment of a cell line from the kidney of black carp and its susceptibility to spring viremia of carp virus. J Fish Dis, 41(2), 365-374.
  39. Nguyen, Manh Hung, et al. (2014). Feeding behavior of black carp Mylopharyngodon piceus (Pisces: Cyprinidae) on fry of other fish species and trematode transmitting snail species. Biological Control, 72, 118-124.
  40. Gidmark, N. J., Taylor, C., LoPresti, E., & Brainerd, E. (2015). Functional morphology of durophagy in black carp, Mylopharyngodon piceus. J Morphol., 276(12), 1422-1432.
  41. Xingyu, Lu, et al. (2020). Identification and characterization of IRF9 from black carp Mylopharyngodon piceus.Developmental & Comparative Immunology, 103, 103528.
  42. Wei, Zhou, et al. (2015). Identification and characterization of MAVS from black carp Mylopharyngodon piceus. Fish & Shellfish Immunology, 43, 2, 460-468.
  43. Wu, C., Gao, J., Chen, L., Shao, X., & Ye, J. (2018). Identification, characterization, and expression analysis of adiponectin receptors in black carp Mylopharyngodon piceus in response to dietary carbohydrate. Fish Physiol Biochem, 44(4), 1127-1141.
  44. Zhilin, Huang, Song, Chen, Jiachen, Liu, Jun, Xiao, Jun, Yan, & Hao, Feng. (2015). IFNa of black carp is an antiviral cytokine modified with N-linked glycosylation. Fish & Shellfish Immunology, 46, 2, 477-485.
  45. Hui, Wu, Liqun, Liu, Sizhong, Wu, Chanyuan, Wang, Chaoliang, Feng, Jun, Xiao, & Hao, Feng. (2018). IFNb of black carp functions importantly in host innate immune response as an antiviral cytokine. Fish & Shellfish Immunology, 74, 1-9.
  46. Feng, H., Cheng, J., Liu, Y., Luo, J., Li, J. Z., Liu, S. J., & Liu, J. (2005). In vitro expression and antibody preparation of black carp (Mylopharyngodon piceus) GH. Yi Chuan, 27(5), 729-34.
  47. Jun, Xiao, et al. (2016). LGP2 of black carp plays an important role in the innate immune response against SVCV and GCRV. Fish & Shellfish Immunology, 57, 127-135.
  48. Liu, W. (2020). Complement proteins detected through iTRAQ-based proteomics analysis of serum from black carp Mylopharyngodon piceus in response to experimentally induced Aeromonas hydrophila infection. Dis Aquat Organ, 140, 187-201.
  49. Xueshu, Zhang, et al. (2022). Long non-coding RNAs are involved in immune resistance to Aeromonas hydrophila in black carp (Mylopharyngodon piceus). Fish & Shellfish Immunology, 127, 366-374.
  50. Jun, Li, et al. (2018). Lysine 39 of IKKε of black carp is crucial for its regulation on IRF7-mediated antiviral signaling. Fish & Shellfish Immunology, 77, 410-418.
  51. Yixiao, Qu, et al. (2015). Molecular cloning and characterization of IKKε gene from black carp Mylopharyngodon piceus. Fish & Shellfish Immunology, 47, 1, 122-129.
  52. Chaoliang, Feng, Yinyin, Zhang, Jun, Li, Ji, Liu, Hui, Wu, Jun, Xiao, & Hao, Feng. (2018). Molecular cloning and characterization of TANK of black carp Mylopharyngodon piceus.Fish & Shellfish Immunology, 81, 113-120.
  53. Shujian, Chen, et al. (2020). Molecular cloning, characterization and expression modulation of four ferritins in black carp Mylopharyngodon piceus in response to Aeromonas hydrophila challenge. Aquaculture Reports, 16, 100238.
  54. Chenglong, Wu, et al. (2016). Molecular cloning, characterization and mRNA expression of six peroxiredoxins from Black carp Mylopharyngodon piceus in response to lipopolysaccharide challenge or dietary carbohydrate. Fish & Shellfish  Immunology, 50, 210-222.
  55. Ji, Liu, et al. (2020). Multi-omics analysis revealed crucial genes and pathways associated with black carp antiviral innate immunity. Fish & Shellfish Immunology, 106, 724-732.
  56. Jun, Xiao, et al. (2016). Mx1 of black carp functions importantly in the antiviral innate immune response. Fish & Shellfish Immunology, 58, 584-592.
  57. Xueshu, Zhang, et al. (2019). Myeloid differentiation factor 88 (Myd88) is involved in the innate immunity of black carp (Mylopharyngodon piceus) defense against pathogen infection. Fish & Shellfish Immunology, 94, 220-229.
  58. Jun, Yan, Guoxia, Qiao, Enhui, Wang, Yuqing, Peng, Jiamin, Yu, Hui, Wu, Meiling, Liu, Jiagang, Tu, Yongan, Zhang, & Hao, Feng. (2023). Negatively regulation of MAVS-mediated antiviral innate immune response by E3 ligase RNF5 in black carp. Fish & Shellfish Immunology, 134, 108583.
  59. Nico, L. G., Williams, J. D., & Jelks H. L. (2005). Black carp. Biological synopsis and risk assessment of an introduced fish. Bethesda, Maryland: American Fisheries Society.
  60. Zhaoyuan, Chen, et al. (2021). NLK suppresses MAVS-mediated signaling in black carp antiviral innate immunity. Developmental & Comparative Immunology, 122, 104105.
  61. Xuejiao, Song, et al. (2019). NLRX1 of black carp suppresses MAVS-mediated antiviral signaling through its NACHT domain. Developmental & Comparative Immunology, 96, 68-77.
  62. Qun, Wang, et al. (2022). PKACα negatively regulates TAK1/IRF7 signaling in black carp Mylopharyngodon piceus. Developmental & Comparative Immunology, 127, 104306.
  63. Yang, X., Ai, Y., Chen, L., Wang, C., Liu, J., Zhang, J., Li, J., Wu, H., Xiao, J., Chang, M., & Feng, H. (2023). PRKX down-regulates TAK1/IRF7 signaling in the antiviral innate immunity of black carp Mylopharyngodon piceus. Front Immunol, 11, 13, 999219.
  64. Can, Yang, et al. (2023). PRMT6 inhibits K63-linked ubiquitination and promotes the degradation of IRF3 in the antiviral innate immunity of black carp Mylopharyngodon piceus.Aquaculture, 562, 738872.
  65. Yulong, Bao, et al. (2020). Protein degradation of black carp (Mylopharyngodon piceus) muscle during cold storage. Food Chemistry, 308, 125576.
  66. Hongbing, Fan, et al. (2014). Biogenic amine and quality changes in lightly salt- and sugar-salted black carp (Mylopharyngodon piceus) fillets stored at 4 °C. Food Chemistry, 159, 15, 20-28.
  67. Yves, Harimana, et al. (2018). Quality parameters of black carp (Mylopharyngodon piceus) raised in lotic and lentic freshwater systems. LWT, 90, 45-52.
  68. Yuhan, Dai, et al. (2021). RIPK3 collaborates with RIPK1 to inhibit MAVS-mediated signaling during black carp antiviral innate immunity. Fish & Shellfish Immunology, 115, 142-149.
  69. Dai, Y. F., Shen, Y. B., Wang, S. T., Zhang, J. H., Su, Y. H., Bao, S. C., Xu, X. Y., & Li, J. (2021). L. RNA-Seq Transcriptome Analysis of the Liver and Brain of the Black Carp (Mylopharyngodon piceus) During Fasting. Mar Biotechnol (NY), 23(3), 389-401.
  70. Jun, Yan, et al. (2023). Role of the dimerization domain of black carp STING during the antiviral innate immunity. Reproduction and Breeding, 3, 2, 59-65.
  71. Jun, Li, et al. (2019). SIKE of black carp is a substrate of TBK1 and suppresses TBK1-mediated antiviral signaling. Developmental & Comparative Immunology, 90, 157-164.
  72. Hui, Wu, et al. (2019). STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV. Fish & Shellfish Immunology, 87, 386-394.
  73. Li, X., Zhang, Y., Li, X., Zheng, H., Peng, J., & Fu, S. (2018). Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus) at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses. Biol Open, 7(2), bio032425.
  74. Chanyuan, Wang, Jun, Peng, Minyu, Zhou, Guancheng, Liao, Xiao, Yang, Hui, Wu, Jun, Xiao, & Hao, Feng. (2019). TAK1 of black carp positively regulates IRF7-mediated antiviral signaling in innate immune activation Fish & Shellfish Immunology, 84, 83-90.
  75. Chuanzhe, Yan, et al. (2017). TBK1 of black carp plays an important role in host innate immune response against SVCV and GCRV. Fish & Shellfish Immunology, 69, 108-118.
  76. Ji, Liu, Jun, Li, Jun, Xiao, Hui, Chen, Liang, Lu, Xu, Wang, Yu, Tian, & Hao, Feng. (2017). The antiviral signaling mediated by black carp MDA5 is positively regulated by LGP2. Fish & Shellfish Immunology, 66, 360-371.
  77. Chenglong, Wu, et al. (2016). The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile Black carp Mylopharyngodon piceus.Fish & Shellfish Immunology, 49, 132-142.
  78. Chenglong, Wu, et al. (2017). The effects of dietary leucine on the growth performances, body composition, metabolic abilities and innate immune responses in black carp Mylopharyngodon piceus.Fish & Shellfish Immunology, 67, 419-428.
  79. Pang, X., Fu, S. J., Li, X. M., & Zhang, Y. G. (2016). The effects of starvation and re-feeding on growth and swimming performance of juvenile black carp (Mylopharyngodon piceus). Fish Physiol Biochem, 42(4), 1203-1212.
  80. Liu, J., He, Y., Miao, Y., Dai, C., Yan, J., Liu, M., Zou, J., & Feng, H. (2023). The phenylalanine-28 is crucial for black carp RIG-I mediated antiviral signaling. Dev Comp Immunol, 148, 104917.
  81. Hui, Chen, et al. (2017). TRAF2 of black carp upregulates MAVS-mediated antiviral signaling during innate immune response. Fish & Shellfish Immunology, 71, 1-9.
  82. Xu, Wang, Xuejiao, Song, Xinchi, Xie, Wanzhen, Li, Liang, Lu, Song, Chen, Hui, Wu, & Hao, Feng. (2018). TRAF3 enhances STING-mediated antiviral signaling during the innate immune activation of black carp. Developmental & Comparative Immunology, 88, 83-93.
  83. Xueshu, Zhang, Yubang, Shen, Xiaoyan, Xu, Meng, Zhang, Yulin, Bai, Yiheng, Miao, Yuan, Fang, Jiahua, Zhang, Rongquan, Wang, & Jiale, Li. (2018). Transcriptome analysis and histopathology of black carp (Mylopharyngodon piceus) spleen infected by Aeromonas hydrophila. Fish & Shellfish Immunology, 83, 330-340.
  84. Zhang, J., Shen, Y., Xu, X., Dai, Y., & Li, J. (2020). Transcriptome Analysis of the Liver and Muscle Tissues of Black Carp (Mylopharyngodon piceus) of Different Growth Rates. Mar Biotechnol (NY), 22(5), 706-716.
  85. Fei, Peng, Saisai, Jin, Zhaoyuan, Chen, Haiyan, Chang, Jun, Xiao, Jianzhong, Li, Jun, Zou, & Hao, Feng. (2021). TRIF-mediated antiviral signaling is differentially regulated by TRAF2 and TRAF6 in black carp. Developmental & Comparative Immunology, 121, 104073.
  86. Hung, N. M., Duc, N. V., Stauffer, J. R. Jr., & Madsen, H. (2013). Use of black carp (Mylopharyngodon piceus) in biological control of intermediate host snails of fish-borne zoonotic trematodes in nursery ponds in the Red River Delta, Vietnam. Parasit Vectors, 16, 6, 142.
  87. Xueshu, Zhang, et al. (2020). Using GFP as a biomarker to visualize the process of bacterial infection in black carp (Mylopharyngodon piceus). Aquaculture Reports, 18, 100530.
  88. Wang, Y., Xue, T., Wang, Q., Xia, B., Pan, Q., & Chen, T. (2020). Virus susceptibility of a new cell line derived from the fin of black carp Mylopharyngodon piceus. J Fish Biol, 96(2), 418-426.
  89. Wozney, Kristyne M., & Wilson, Chris C. (2017). Quantitative PCR multiplexes for simultaneous multispecies detection of Asian carp eDNA. Journal of Great Lakes Research, 43, 4, 771-776.