pdf35

Ribogospod. nauka Ukr., 2023; 3(65): 86-101
DOI: https://doi.org/10.15407/fsu2023.03.086
UDC 575.22:639.3

Evaluation of the genetic variability of pedigree stocks of amur carp (Cyprinus rubrofuscus Lacépède, 1803)

А. Mariutsa, This email address is being protected from spambots. You need JavaScript enabled to view it. , Іnstitute of Fisheries NAAS, Kyiv
I. Hrystyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries N AAS, Kyiv
Yu. Glushko, This email address is being protected from spambots. You need JavaScript enabled to view it. , Іnstitute of Fisheries NAAS, Kyiv
Т. Nahorniuk, This email address is being protected from spambots. You need JavaScript enabled to view it. , Іnstitute of Fisheries NAAS, Kyiv

Purpose. To study the genetic peculiarities of pedigree tocksof Amur carp and evaluate its genetic variability by analyzing distribution of alleles and genotypes by the specific protein systems and cytogenetic parameters.

Methodology. Analysis of polymorphism of protein systems was performed using electrophoresis in polyacrylamide gel. As protein markers to evaluate the genetic structure of Amur carp stocks, the separation of allelic and genotypic frequencies by loci, which encode a number of fish blood proteins, were used: transferrin (TF), albumin (ALB) and esterase (EST, 3.1.1.1). Cytogenetic analysis was performed using the micronucleus test and analysis of apoptosisfrequencies. Collection and processing of biological material of fish as well as statistical processing of the obtained data was performed using generally accepted methods.

Findings. A comprehensive analysis of the genetic structure of Amur carp from three farms in Ukraine was carried out by protein systems and cytogenetic markers.

The results of the study showed that all pedigree groups of Amur carp were characterized by a deviation towards the predominance of heterozygotes (Fis = from –0.084 to –0.344). A minimal imbalance was observed in the group of carp from the farm “Karpatskyi Vodogray” LLC (Fis = –0.084).

The maximum violation of the genetic balance was found in carp from the farm of JSC “Sumyrybhosp” (Fis = –0.308) and in the group from the experimental farm “Veliky Lyubin” (Fis = –0.344). In general, the analysis of the protein systems of fish blood showed a high level of heterogeneity of pedigree stocks of Amur carp from different farms in Ukraine.

The analysis of frequencies of cytogenetic parameters of Amur carp from three fish farms showed that fish from fish farms of JSC “Sumyrybhosp” and PFE “Dzherelo”  were characterized by a lower frequency of erythrocytes with micronuclei (EMN) (3.3±0.3 ‰), (3.2±0.3 ‰), lymphocytes with micronuclei (LMN) (2.1±0, 2 ‰), (1.9±0.2 ‰), and apoptosis (4.2±0.3‰), (4,3±0,3‰) compared to the group from fish farm “Karpatskyi Vodogray” LLC, where these values were as follows: EMN (4.7±0.3 ‰), LMN (2.4±0.2‰), apoptosis (5.6±0.4‰).  These  results indicates a lower level of destabilization of chromosomal apparatus of Amur carp from the fish farm JSC “Sumyrybhosp” at the time of the study.

Originality. A comprehensive evaluation of the level of variability of the genetic structure of pedigree stocks of Amur carp from different regions of Ukraine was performed for the first time.

Practical Value. Pedigree socksof Amur carp have important practical value in selective breeding work with carps, including works for obtaining hybrid lines to increase the resistance of breeding material.

Keywords: Amur carp, genetic structure, locus, alleles, genotype, heterozygosity, micronucleus test, cytogenetic analysis.

REFERENCE

  1. Martseniuk, V. M. (2019). Osoblyvosti rehuliatsii enerhozabezpechennia adaptatsii ryb do dii abiotychnykh ta antropohennykh chynnykiv. Candidate’s thesis. Kyiv.
  2. Hrytsyniak, I. I. (2008). Biolohichni osoblyvosti ta faktory pidvyshchennia produktyvnosti koropiv liubinskykh vnutrishnoporidnykh typiv, yikh pomisei ta hibrydiv. Doctor’s thesis. Kyiv.
  3. Jiang, Y., Yu, M., Dong, C., Xu, J., Chang, S., Zhang, Q., Feng, J., Zhang, H., Zhu, Y., & Wu, B. (2022). Genomic features of common carp that are relevant for resistance against Aeromonas hydrophila infection. Aquaculture,  547-559.
  4. Songhuan, Chang, Jiali, Wang, Chuanju, Dong, & Yanliang, Jiang. (2023). Intestinal microbiota signatures of common carp (Cyprinus carpio) after the infection of Aeromonas hydrophila. Aquaculture Reports, 30.
  5. Xian-Liang, Zhao-Hui, JIN, Gui-Lan, DI, Li, LI, & Xiang-Hui, Kong. (2019). Molecular characteristics, pathogenicity and medication regimen of Aeromonas hydrophila isolated from common carp (Cyprinus carpio L.). J Vet Med Sci., 81(12), 1769-1775. DOI: https://10.1292/jvms.19-0025.
  6. Tarasiuk, S. I., Bochkov, V. M., Postoienko, D. M., & Mariutsa, A. E. (2021). Adaptyvni osoblyvosti henetychnoi struktury sazana amurskoho. Tsili staloho rozvytku tretoho tysiacholittia: vyklyky dlia universytetiv nauk pro zhyttia: materialy mizhnarodno-naukovoi konferentsii, 3, 335-337.
  7. Solopova, Kh. Ya. (2021). Stan antyoksydantnoi y imunnoi system u koropiv, urazhenykh aeromonozom i saprolehniozom, ta yikh likuvannia. Candidate’s thesis.  Lviv.
  8. Borysenko, N. O., Mariutsa, A. E., & Bielikova, O. Yu. (2023). Porivnialnyi analiz henetychnoi struktury luskatykh ta ramchastykh koropiv PrAT Chernihivrybhosp. Rozvedennia i henetyka tvaryn, 65, 168-176. DOI: https://doi.org/10.31073/abg.65.15.
  9. Mariutsa, A. E., Borysenko, N. O., Hankevych, B. O., & Bielikova, O. Yu. (2023). Analiz henetychnoi struktury ukrainskykh porid koropiv z vykorystannia bilkovykh markeriv. Visnyk ahrarnykh nauk, 4 (841), 52-57.
  10. Bielikova, O., Zaloilo, O., Тarasjuk, S., Mruk, A., & Romanenko, V. (2019). Genetic structure of the Chernivtsi local stock of rainbow trout (Oncorhynchus mykiss) as determined by SSR-markers Faktory eksperymentalnoyi evolyutsii organizmiv, 25. DOI: https://doi.org/10.7124/FEEO.v25.1134.
  11. Klymenko, M. O., & Biedunkova, O. O. (2017). Bioindykatsiia stanu hidrosystem za morfolohichnymy ta tsytohenetychnymy kharakterystykamy homeostazu ryb: мonohrafiia. Rivne: NUVHIP.
  12. Hrytsyniak, I. I., Tarasiuk, S. I., Zaloilo, O. V., Mariutsa, A. E., Hlushko, Yu. M., & Habuda, O. A. (2018). Henetychna struktura sazana amurskoho TzOV Karpatskyi vodohrai. Visnyk ahrarnoi nauky, 7, 37-45. DOI: https://10.31073/agrovisnyk201807-06.
  13. Kohlmann, K., Gross, R., Murakaeva A., & Kersten P. (2003). Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquatic Living Resources, 16(5), 421-431. DOI: https://10.1016/S0990-7440(03)00082-2.
  14. Nedoluzhko, A. V., & Gladysheva-Azgari, M. V. (2021). Genetic contribution of domestic European common carp (Cyprinus carpio carpio) and Amur carp (Cyprinus carpio haematopterus) to the wild Vietnamese carp population as revealed by ddRAD sequencing. Aquaculture, 544.
  15. Desvignes, Jean-Francois, Jean, Laroche, & Jean-Dominique, Durand (2021). Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture, 194(3), 291-301. DOI: https://10.1016/S0044-8486(00)00534-2.
  16. Obiakor, M. O., Okonkwo, J. C., & Nnabude, P. (2012). Chigozie Damian Ezeonyejiaku  Eco-genotoxicology: micronucleus assay in fish erythrocytes as In situ Aquatic Pollution Biomarker. J Anim Sci Adv., 2(1), 123-133.
  17. Kamel, Ahmad, & Jaber, Salehl. (2010). Clastogenic studies on Tandaha Dam water in Asser. Mediterranean Environment, 16, 1, 33-42.
  18. Dhawan, A., Bajpayee, M., Pandey, A. K., & Parmar, D. (2009). Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment. Lucknow: Developmental Toxicology Division Industrial Toxicology Research Centre Marg.
  19. Mariutsa, A. E., Nahorniuk, T. A., & Hlushko, Yu. M. (2023) Peculiarities of genetic variability of valuable fish species. Achievements and research prospects in animal husbandry and veterinary medicine : Scientific monograph. Riga, Latvia: Baltija Publishing.
  20. Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences.
  21. Shaklee, J. B., et al. (1990). Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society.
  22. Toptikov, V. A., Yershova, O. M., Kovtun, O. O., Lavrenyuk, T. I., & Toczkyj, V. M. (2017). Genetyko-biohimichni doslidzhennya adaptyvnosti tvaryn ta yix ugrupovan`: navchal`no-metodychny`j posibnyk. Odesa: Odes`ky`j nacional`ny`j universytet imeni I. I. Mechny`kova.
  23. Trofymenko, O. L., Gyl`, M. I., & Smetana, O. Yu. (2018). Genetyka populyacij: pidruchny`k. Mykolayiv: Gel`vetyka.
  24. Wright, S. (1951). The genetical structure of populations. Ann. Eugenics, 15(4), 323-354.
  25. Swofford, D. L., & Selander, R. B. (1981). BIOSYS-1: Fortain programm for the comprehensive analysis of electroforetic data in population genetics and systematics J. Heredity, 72, 281-283.
  26. Stoika, Yu. O., Haranko, N. M., & Arkhypchuk, V. V. (2001). Rozrobka pryzhyttievoho mikroiadernoho testu na rybakh. Naukovi Zapysky – Scientific notes, 4, 15-16.
  27. Dzitsiuk, V. V., Bratytsia, Kh. T., & Huzevatyi, O. Ye. (2022). Atlas khromosom silskohospodarskykh ta domashnikh tvaryn. Kyiv: Ahrarna nauka.
  28. Hrytsyniak, I. I., Mariutsa, A. E., Borysenko, N. O., & Tushnytska, N. Y. (2021). Zastosuvannia molekuliarno – henetychnykh markeriv v rybnytstvi. Formuvannia novoi paradyhmy rozvytku ahropromyslovoho sektoru v XXI stolitti: Kolektyvna monohrafiia. Kherson.
  29. Hlushko, Yu. M., & Tarasiuk, S. I. (2012). Analiz henetychnoi struktury ukrainskykh koropiv ramchastoi ta luskatnoi porid. Problemy ekolohichnoi biotekhnolohii, 2, 54-70.