pdf35

Ribogospod. nauka Ukr., 2023; 3(65): 57-85
DOI: https://doi.org/10.15407/fsu2023.03.057
UDC 639.371.2.03

Biological peculiarities of artificial reproduction of sturgeons (Acipenseriformes) (a rеview)

O. Kuzmenko, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences of Ukraine, Kyiv
N. Vovk, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences of Ukraine, Kyiv

Purpose. To analyze the scientific data of domestic and foreign authors regarding the peculiarities of artificial reproduction of sturgeonss (Acipenseriformes). To investigate the state of study of the phenomenon of polyspermic fertilization in sturgeons and the factors that induce it in the conditions of artificial reproduction and cultivation.

Findings. A review analysis of the results of scientific studies by domestic and foreign authors was carried out on the pecularities of artificial reproduction of sturgeons and the phenomenon of polysperm fertilization of their eggs in controlled conditions of aquaculture. It is shown that information on the problems of sturgeon polyspermy and its induction by various factors was practically absent in the available professional literature in recent years. Since during the artificial reproduction of sturgeons, a significant number of embryos have atypical development, which leads to their death even before hatching, it has been suggested that atypical forms of cell division were caused by polyspermy. The conducted studies added to the knowledge about the peculiarities of the structure of the sturgeon egg envelope and the processes that occur during fertilization. Despite the fact that there is a natural mechanism to prevent the possibility of polyspermic fertilization, this phenomenon occurs quite often, causing an impairment of zygote fragmentation at the initial stages of embryogenesis, and therefore a decrease in the yield of larvae. Understaning of the mechanism of blocking polyspermy in sturgeons and the factors that induce it requires further studies. The list of scientific articles includes 61 sources, 58 in English. The published publications mainly cover the period of the last twenty years.

Practical value. A review of data from scientific and professional sources on the specified topic will allow a comprehensive approach to the understanding of the peculiarities of artificial reproduction of sturgeons, the phenomenon of polyspermy and increasing the yield of larvae in sturgeon farming. Review material on this topic can be interesting and useful for scientists, practitioners, students whose interests are related to aquaculture and used in the educational process of training specialists in specialty 207 “Aquatic bioresources and aquaculture”.

Keywords: aquaculture, sturgeons (Acipen­seriformes), eggs, egg envelope, micropyle, fertilization, cortical reaction, polyspermy, embryos.

REFERENCE

  1. Kudo, S. (1991). Fertilization, cortical reaction, polyspermy-preventing and antimicrobial mechanisms in fish eggs. Bull. Inst. Zool. Acad. Sinica Monograph, 16, 313-340.
  2. Iegorova, Viktoriia, et al. (2018). Polyspermy produces viable haploid/diploid mosaics in sturgeon. Biology of Reproduction, 99, 4, 695-706.
  3. Ginsburg, A. (1961). The block to polyspermy in sturgeon and trout with special reference to the role of cortical granules. Journal of embryology and experimental morphology, 9, 173-90.
  4. Bemis, W. E., & Kynard, B. (1997) Sturgeon rivers: an introduction to Acipenseriformes biogeography and life history. Sturgeon Biodiversity and Conservation. Dordrecht: Kluwer Academic Publishers, 167-183.
  5. Bronzi, P., Chebanov, M., Michaels, J. T., Wei, Q., Rosenthal, H., & Gessner, J. (2019). Sturgeon meat and caviar production. Global update 2017. J Appl Ichthyol, 35, 257-266.
  6. Shivaramu, S., Lebeda, I., Kašpar, V., & Flajšhans, M. (2020). Intraspecific Hybrids Versus Purebred: A Study of Hatchery-Reared Populations of Sterlet Acipenser ruthenus. Animals, 10(7), 1149.
  7. Stakėnas, S., & Pilinkovskij, A. (2019). Migration patterns and survival of stocked Atlantic sturgeon (Acipenser oxyrinchus Mitchill, 1815) in Nemunas Basin, Baltic Sea. J Appl Ichthyol, 35, 128-137.
  8. McDougall, C. A., et al. (2014). Relative recruitment success of stocked age‐1 vs age‐0 lake sturgeon (Acipenser fulvescens Rafinesque, 1817) in the Nelson River, Northern Canada. Journal of Applied Ichthyology, 30.6, 1451-1460.
  9. Chebanov, M. S., & Galich, E. V. (2013). Sturgeon hatchery manual. FAO Fisheries and Aquaculture Technical Paper, 558.
  10. Rzemieniecki, A., et al. (2004). Induced spermiation in 3-year-old sterlet, Acipenser rutnenus L. Aquaculture Research, 35, 144-151.
  11. Shamova, O., Orlov, D., Balandin, S., Shramova, E., Tsvetkova, E., & Panteleev, P., et al. (2014).  Acipensins novel antimicrobial peptides from leukocytes of the Russian  sturgeon Acipenser gueldenstaedtii. Acta Naturae, 6, 99, 109.
  12. Lebeda, I., Rab, P., Majt´anova, ´ Z., & Flajˇshans, M. (2020). Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Scientific Reports, 10(1), 1-10.
  13. Yebra-Pimentel, E. S., Reis, B., Gessner, J., Wuertz, S., & Dirks, R. P. (2020). Temperature training improves transcriptional homeostasis after heat shock in juvenile Atlantic sturgeon (Acipenser oxyrinchus). Fish Physiology and Biochemistry, 46(5), 165-166.
  14. Van Eenennaam, J. P., Fiske, A. J., Leal, M. J., Cooley-Rieders, C., Todgham, A.E., & Conte, F. S., et al. (2020). Mechanical shock during egg de-adhesion and postovulatory ageing contribute to spontaneous autopolyploidy in white sturgeon culture (Acipenser transmontanus). Aquaculture, 515, 734530.
  15. Martseniuk, V. P. (2011). Ultrasonohrafiia v akvakulturi. Rybohospodarska nauka Ukrainy, 2, 88-98.
  16. Kecse-Nagy, K. (2011). Trade in sturgeon caviar in Bulgaria and Romania: Overview of  reported trade in caviar, 1998-2008. Traffic Europe.
  17. Van Uhm, D., & Siegel, D. (2016). The illegal trade in black caviar. Trends in Organized Crime, 19(1), 67-87.
  18. Munhofen, J. L., Jiménez, D. A., Peterson, D. L., Camus, A. C., & Divers, S. J. (2014). Comparing ultrasonography and endoscopy for early gender identification of juvenile Siberian sturgeon. North American Journal of  Aquaculture, 76, 14- 23.
  19. Haxton, T. J., Sulak, K., & Hildebrand, L. (2016). Determination of sex and maturity in sturgeon (Acipenser stellatus) by using ultrasonography. Journal of Applied Ichthyology, 18, 325-328.
  20. Esmailnia, R., Ghomi, M. R., & Sohrabnezhad, M. (2019). Early sex identification of 18-month cultured beluga sturgeon (Huso huso) using ultrasonography, small surgery and plasma steroid hormones. J Appl Ichthyol, 35, 420-426.
  21. Caimi, Christian, Gasco, Laura, Biasato, Ilaria, Malfatto, Varello, Katia, Prearo, Marino, Pastorino, Paolo, Bona, & Francese, Danila, et al. (2020). Could Dietary Black Soldier Fly Meal Inclusion Affect the Liver and Intestinal Histological Traits and the Oxidative Stress Biomarkers of Siberian Sturgeon (Acipenser baerii) Juveniles?. Animals, 10, 155.
  22. Rzepkowska, M., Adamek-Urbańska, D., Fajkowska, M., & Roszko, M. Ł. (2020). Histological Evaluation of Gonad Impairments in Russian Sturgeon (Acipenser gueldenstaedtii) Reared in Recirculating Aquatic System (RAS). Animals (Basel, 18, 10(8), 1439.
  23. Webb, M. A. H., Van Eenennaam, J. P.  Doroshov, S. I., & Moberg, G. P. (1999). Preliminary observations on the effects of holding temperature on reproductive performance of female white sturgeon, Acipenser transmontanus Richardson. Aquaculture, 176, 315-329.
  24. Webb, M. A. H., Van Eenennaam, J. P., Feist, G. W., Linares-Casenave, J., Fitzpatrick, M. S., Schreck, C. B., & Doroshov, S. I. (2001). Effects of thermal regime on ovarian maturation and plasma sex steroids in farmed white sturgeon, Acipenser transmontanus. Aquaculture, 201, 137-151.
  25. Bayunova, L., Barannikova, I., & Semenkova, T. (2002). Sturgeon stress reactions in aquaculture. J. Appl. Ichthyol, 18, 397-404.
  26. Hamlin, H. J., Moore, B. C., Edwards, T. M., Larkin, I. L. V., Boggs, A., High, W. J., Main, K. L., & Guillette, L. J. (2008). Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture. Aquaculture, 281, 118-125.
  27. Falahatkar, B., Akhavan, S. R., & Ghaedi, G. (2014). Egg cortisol response to stress at early stages of development in Persian sturgeon Acipenser persicus. Aquacult Int, 22, 215-223.
  28. Dettlaff, T., Ginsburg, A., & Schmalhausen, O. (1993). Sturgeon Fishes. Developmental Biology and Aquaculture. Berlin; Heidelberg: Springer-Verlag, 300.
  29. Siddique, M. A., Pšenička, M., Cosson, J., Dzyuba, B., Rodina, M., Golpour, A., & Linhart, O. (2016). Egg stickiness in artificial reproduction of sturgeon: an overview. Reviews in Aquaculture, 8, 18-29.
  30. Pšenička, M. (2016). A novel method for rapid elimination of sturgeon egg stickiness using sodium hypochlorite. Aquaculture, 453, 73-76.
  31. Debus, L., Winkler, M., & Billard, R. (2002). Structure of Micropyle Surface on Oocytes and Caviar Grains in Sturgeons. Internat. Rev. Hydrobiol., 87, 585-603.
  32. Podushka, S. B. (1999). New method to obtain sturgeon eggs. Journal of Applied Ichthyology, 15 (4-5), 319.
  33. Cherr, G. N., & Clark, W. H., JR. (1982). Fine Structure of the Envelope and Micropyles in the Eggs of the White Sturgeon, Acipenser transmontanus Richardson. Development, Growth & Differentiation, 24, 341-352.
  34. Zelazowska, M., (2010). Formation and structure of egg envelopes in Russian sturgeon Acipenser gueldenstaedtii (Acipenseriformes: Acipenseridae). J. Fish Biol., 76, 694-706.
  35. Linhart, O., & Kudo, S. (1997). Surface ultrastructure of paddlefish eggs before and after fertilization. Journal of Fish Biology, 51, 573-582.
  36. Cherr, G. N., & Clark, W. H. (1985). Gamete interaction in the white sturgeon Acipenser transmontanus: a morphological and physiological review. Environ. Biol. Fish., 14, 11-22.
  37. Murata, Kenji. (2003). Blocks to Polyspermy in Fish: A Brief Review. Aquaculture and Pathobiology of Crustacean and Other Species.
  38. Bemis, W. E., Findeis, E. K., & Grande, L. (1997). An overview of Acipenseriformes. Environmental Biology of Fishes, 48, 25-71.
  39. Psenicka, M., Rodina, M., & Linhart, O. (2010). Ultrastructural study on fertilization process in sturgeon (Acipenser), function of acrosome and prevention of polyspermy. Animal Reproduction Science, 117, 147-154.
  40. Andriushchenko, A. I., Vovk, N. I., & Kondratiuk, V. M. (2018). Osetrivnytstvo. (Vol. I. Stavove osetrivnytstvo). Kyiv.
  41. Runnstrom, J. (1952). The cell surface in relation to fertilisation. Symp. Soc. Exp. Biol., 6, 39-88.
  42. Allen, R. D. (1958). The initiation of development. A Symposium on the Chemical Basis of Development, 17-72.
  43. Rothschild (1953). The fertilization reaction in the sea urchin. The induction of polyspermy by nicotine. Exp. Biol., 30, 57-67.
  44. Dettlaff, T. A. (1957). Cortical granules and substances secreted from the animal portion of the egg in the period of activation in Acipenseridae. Doklady Akad. Nauk SSSR, 116, 341-344.
  45. Ginsburg A. S. (1961). The Block to Polyspermy in Sturgeon and Trout with Special Reference to the Role of Cortical Granules (Alveoli). Development 1 March, 9 (1), 173-190.
  46. Tram, U., & Sullivan, W. (2000). Reciprocal inheritance of centrosomes in the parthenogenetic Hymenopteran Nasonia vitripennis. Current Biology, 10, 1413-1419.
  47. Snook, Rhonda, Hosken, David, & Karr, Timothy. (2011). The biology and evolution of polyspermy: Insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction, 142.
  48. Gawlicka, A., Teh, S. J., Hung, S., Hinton, D., & De La Noüe, J. (1995). Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiology and Biochemistry, 14(5), 357-371.
  49. Hardy, R. S., & Litvak, M. K. (2004). Effects of temperature on the early development, growth, and survival of shortnose sturgeon, Acipenser brevirostrum, and Atlantic sturgeon, Acipenser oxyrhynchus, yolk-sac larvae. Environmental Biology of Fishes, 70 (2), 145-154.
  50. Hubálek, M., Kašpar, V., Tichopád, T., Rodina, M., & Flajšhans, M. (2022). How do suboptimal temperatures affect polyploid sterlet Acipenser ruthenus during early development? Journal of Fish Biology, 101(1), 77-91.
  51. Gisbert, E., Solovyev, M., Bonpunt, E., & Mauduit, C. (2018). Weaning in Siberian sturgeon larvae. The Siberian Sturgeon. 2: Farming, 59-72.
  52. Gisbert, E., & Williot, P. (1997). Larval behaviour and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baeri) larvae under small scale hatchery production. Aquaculture, 156(1-2), 63-76.
  53. Fashtomi, H. R. P., & Mohseni, M. (2006). Survival and growth of larval and juvenile Persian sturgeon (Acipenser persicus) using formulated diets and live food. Journal of Applied Ichthyology, 22, 303-306.
  54. Babaei, S. S., Kenari, A. A., Nazari, R., & Gisbert, E. (2011). Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture, 318(1-2), 138-144.
  55. Hardy, R. S., Zadmajid, V., Butts, I. A., & Litvak, M. K. (2021). Growth, survivorship, and predator avoidance capability of larval shortnose sturgeon (Acipenser brevirostrum) in response to delayed feeding. PLoS One, 16(3), e0247768.
  56. Sherman, I. M., Shevchenko, V. Y., Kornienko, V. O., & Ignatov, O. V. (2009). Ekoloho-tekhnolohichni osnovy vidtvorennia i vyroshchuvannia  molodi  ose-tropodibnykh [Ecological-technological bases of reproduction and cultivation of young sturgeon]. Kherson: Oldi-Plus (in Ukrainian).
  57. Kornienko, V. O., & Olifirenko, V. V. (2020). Dynamics of growing of Russian sturgeon (Acipenser gueldenstaedtii) larvae for different durations of cultivation. Regulatory Mechanisms in Biosystems, 11(3), 438-443.
  58. Chapman, Demian, Firchau, Beth, & Shivji, Mahmood. (2008). Parthenogenesis in a large‐bodied requiem shark, the blacktip Carcharhinus limbatus. Journal of Fish Biology, 73, 1473-1477.
  59. Booth, Warren, Johnson, Daniel, Moore, Sharon, Schal, Coby, & Vargo, Edward. (2010). Evidence for viable, non-clonal but fatherless Boa constrictors. Biology letters, 7, 253-256.
  60. Siddique, Mohammad Abdul Momin, Butts, Ian, Psenicka, Martin, & Linhart, Otomar. (2015). Effects of pre-incubation of eggs in fresh water and varying sperm concentration on fertilization rate in sterlet sturgeon, Acipenser ruthenus. Animal Reproduction Science, 159, 141-147.
  61. Siddique, Mohammad Abdul Momin, Butts, Ian, Cosson, Jacky, & Linhart, Otomar. (2016). First report on facultative parthenogenetic activation of eggs in sterlet sturgeon, Acipenser ruthenus. Animal Reproduction Science, 168, 110-115.