Ribogospod. nauka Ukr., 2023; 1(63): 108-140
DOI: https://doi.org/10.15407/fsu2023.01.108
УДК [639.3.043.13:636.087.74]:639.371.52

Pecularities and prospects of using vegetable protein in carp (Cyprinus carpio Linnaeus, 1758) feeding (a review)

G. Romanov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
O. Deren, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv

Purpose. Analysis of the state and prospects of the use of vegetable proteins of various methods of manufacture in carp feeding in view of their functional and technological characteristics as well as in accordance with their impact on fish productive parameters and the functional state of the fish body.

Findings. The world resources of animal and vegetable protein were characterized, a comparative analysis of nutrition, digestibility and functional characteristic data of feed components was carried out.

The protein needs of carp, the main object of aquaculture in Ukraine, were examined. It is noted that vegetable proteins are widely used in carp feeding, but there are a number of limiting factors for the complete replacement of animal proteins with vegetable ones. In particular, the main such factors are the content of anti-nutrients, low digestibility and unbalanced amino acid composition of feed components of plant origin.

Modern approaches to the introduction of plant proteins into the composition of feeds have been analyzed, which allows increasing the efficiency of their use in animal husbandry in general, and in fish farming in particular. The expediency of using plant proteins processed by a technical method, single-cell proteins obtained by fermentation, concentrates produced by the extraction method, hydrolysates obtained by enzymatic hydrolysis, as well as whey-purified protein isolates in feed production were characterized. The effect of their use in fish feeding on the physiological and biochemical parameters of the fish body is considered. It is noted that the composition and digestibility of vegetable proteins may differ depending on the source and processing method. A comparison of the economic feasibility of feeding vegetable and animal proteins to different types of fish was made. The expediency and prospects of using vegetable protein in the conditions of aquaculture in Ukraine and in the cultivation of carp are outlined.

Practical value. Modern approaches to the use of vegetable protein in fish feeding increase its biological value and availability of nutrients, which allows obtaining additional increases in the weight of fish, reduce production costs and improve the quality characteristics of the grown products.

Keywords: vegetable protein feed, animal protein feed, aquaculture, carp, feeding, biological value, digestibility, productivity.


  1. Hardy, Ronald W., Kaushik, Sadasivam J., Kangsen, Mai, & Bai, S. Charles (2022). Chapter 1. Fish nutrition – history and perspectives. Fish Nutrition (Fourth Edition). Academic Press, 1-16. DOI: https://doi.org/10.1016/B978-0-12-819587-1.00006-9.
  2. Tarasiuk S. I., Dvoretskyi, A. I., Deren, O. V., & Zaiarko, O. I. (2015). Biolohichni osnovy hodivli ryb. Dnipro: Adverta.
  3. Vdovenko, N. M. (2016). Rybne hospodarstvo Ukrainy v umovakh hlobalizatsii ekonomiky. Kyiv: TsP Komprynt.
  4. Davis, D., Nguyen, T., Li, M., Gatlin, D.M., & O’Keefe, T. (2009). Chapter 15. Advances in aquaculture nutrition: catfish, tilapia and carp nutrition. New technologies in aquaculture. Woodhead Publishing, 440—458. DOI: https://doi.org/10.1533/9781845696474.3.440.
  5. FAO. (2017). The future of food and agriculture – Trends and challenges. Rome. URL: https://www.fao.org/3/i6583e/i6583e.pdf.
  6. Yemtsev, V. I., Slobodianiuk, N. M., & Yemtseva, H. F. (2022). Rybne hospodarstvo Ukrainy: suchasnyi stan ta perspektyvy vidnovlennia. Naukovi innovatsii ta peredovi tekhnolohii, 9 (11), 314-326. DOI: https://doi.org/10.52058/2786-5274-2022-9(11)-314-326.
  7. Oliva-Teles, A., Enes, P., Couto, A., & Peres, H. (2022). Chapter 8. Replacing fish meal and fish oil in industrial fish feeds. In woodhead publishing series in food science, technology and nutrition, feed and feeding practices in aquaculture (Second edition). Woodhead Publishing, 231-268. DOI: https://doi.org/10.1016/B978-0-12-821598-2.00011-4.
  8. Tacon, Albert G. J., & Metian, Marc (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285 (1–4), 146-158. DOI: https://doi.org/10.1016/j.aquaculture.2008.08.015.
  9. Avelar, Zita, Rodrigues, Rui M., Pereira, Ricardo N., & Vicente, António A. (2022). Chapter 15. Future food proteins – Trends and perspectives. Future Foods. Academic Press, 267-285. DOI: https://doi.org/10.1016/B978-0-323-91001-9.00007-4.
  10. Korniichuk, O. V., Voronetska, I. S., & Rybachenko, O. M. (2014). Vyrobnytstvo ta vykorystannia kormovoho bilka v Ukraini. Ekonomika APK, 8, 26-31.
  11. Podobed, L. I. (2006). Roslynni kormovi dobavky: mynule, sohodennia, maibutnie. Propozytsiia, 12, 92-94.
  12. Zlaugotne, Beate, Pubule, Jelena, & Blumberga, Dagnija (2022). Advantages and disadvantages of using more sustainable ingredients in fish feed. Heliyon, 8 (9). DOI: https://doi.org/10.1016/j.heliyon.2022.e10527.
  13. Obertiukh, Yu. V. (2005). Rol strukturnykh i nestrukturnykh komponentiv roslynnykh kormiv u hodivli zhuinykh tvaryn. Kormy i kormovyrobnytstvo, 55, 187-194. URL : http://www.fri.vin.ua/download_materials/catalogues/55.pdf#page=187.
  14. Glencross, Brett D. (2020). A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquaculture Nutrition, 26 (1), 1871-1883. DOI: https://doi.org/10.1111/anu.13138.
  15. Kaushik, S. J. (1995). Nutrient requirements, supply and utilization in the context of carp culture. Aquaculture, 129 (1–4), 225-241. DOI: https://doi.org/10.1016/0044-8486(94)00274-R.
  16. Obertiukh, Yu. V. (2012). Antypozhyvni rechovyny soi, yikh inaktyvatsiia ta tekhnolohii pererobky soievykh bobiv na promyslovii osnovi y v umovakh hospodarstva. Kormy i kormovyrobnytstvo, 71, 62-71.
  17. George, Francis, Makkar, Harinder, P. S., & Becker, Klaus (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199 (3–4), 197—227. DOI: https://doi.org/10.1016/S0044-8486(01)00526-9.
  18. Krogdahl, Åshild, Kortner, Trond M., & Hardy, Ronald W. (2022). Chapter 12. Antinutrients and adventitious toxins. Fish nutrition (Fourth edition). Academic Press, 775-821. DOI: https://doi.org/10.1016/B978-0-12-819587-1.00001-X.
  19. Drew, M. D., Borgeson, T. L., & Thiessen, D. L. (2007). A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology, 138 (2), 118-136. DOI: https://doi.org/10.1016/j.anifeedsci.2007.06.019.
  20. Craig, S., Helfrich, L., Kuhn, D. D., & Schwarz, M. H. (2017). Understanding fish nutrition, feeds and feeding. Virginia Cooperative Extension, Publ. 420-256. URL : https://fisheries.tamu.edu/files/2019/01/FST-269.pdf.
  21. Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol., 173 (1–2), 111-133. DOI: https://doi.org/10.1016/j.anifeedsci.2011.12.015.
  22. Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170 (3–4), 267-283. DOI: https://doi.org/10.1016/S0044-8486(98)00413-X.
  23. Hofer, R., Via, D., Troppmair, J., & Giussani, G. (1982). Differences in digestive enzymes between cyprinid and non-cyprinid fish. Mem. Ist. Ital. Idrobiol., 40, 201-208.
  24. Mazur, V. A., Honcharuk, I. V., Didur, I. M., Pantsyreva, H. V., Telekalo, N. V., & Kupchuk, I. M. (2021). Innovatsiini aspekty tekhnolohii vyroshchuvannia, zberihannia i pererobky zernobobovykh kultur. Vinnytsia: Nilan-LTD.
  25. Savchuk, Yu. Yu., &Usatiuk, S. I. (2017). Sposoby otrymannia bilkovykh produktiv z roslynnoi syrovyny. Podilskyi visnyk: silske hospodarstvo, tekhnika, ekonomika, 26 (2), 64-71. URL : http://nbuv.gov.ua/UJRN/ZnpPdatu_2017_26%282%29__9.
  26. Makarynska, A. V., &Ohanesian, A. A. (2018). Perevahy vykorystannia bilkovykh roslynnykh kontsentrativ pry vyrobnytstvi kombikormovoi produktsii. Zernovi produkty i kombikormy, 18 (3), 34-39. DOI: https://doi.org/10.52058/2786-5274-2022-9(11)-314-326.
  27. Nesterenko, Alla, Alric, Isabelle, Silvestre, Françoise, &Durrieu, Vanessa (2013). Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, 42, 469-479. DOI: https://doi.org/10.1016/j.indcrop.2012.06.035.
  28. Delbert, M. Gaitlin III, Frederic, T. Barrows, Paul, Brown, Konrad, Dabrowski, T., Gibson Gaylord, Ronald, W. Hardy, Eliot, Herman, Gongshe, Hu, Åshild, Krogdahl, Richard, Nelson, & Kenneth, Overturf, et al. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38 (6), 551-579. DOI: https://doi.org/10.1111/j.1365-2109.2007.01704.x.
  29. Dabrowski, Konrad, &Kozak, Balazs (1979). The use of fish meal and soyabean meal as a protein source in the diet of grass carp fry. Aquaculture, 18 (2), 107-114. DOI: https://doi.org/10.1016/0044-8486(79)90023-1.
  30. Dabrowski, K., Poczyczynski, P., Köck, G., &Berger, B. (1989). Effect of partially or totally replacing fish meal protein by soybean meal protein on growth, food utilization and proteolytic enzyme activities in rainbow trout (Salmo gairdneri). New in vivo test for exocrine pancreatic secretion. Aquaculture, 77 (1), 29-49. DOI: https://doi.org/10.1016/0044-8486(89)90019-7.
  31. Zhang, Chunxiao, Rahimnejad, Samad, Wang, Ya-ru, Lu, Kangle, Song, Kai, Wang, Ling, &Mai, Kangsen (2018). Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483, 173-182. DOI: https://doi.org/10.1016/j.aquaculture.2017.10.029.
  32. Lin, Shimei, & Luo, Li (2011). Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus×O. aureus. Animal Feed Science and Technology, 168 (1–2), 80-87. DOI: https://doi.org/10.1016/j.anifeedsci.2011.03.012.
  33. Ramzy, Yousif, Mukhtar, A. Khan, & Seemab, Zehra (2021). Effect of Replacing Fishmeal with Soybean Meal on Growth, Feed Conversion and Carcass Composition of Fingerling Oreochromis niloticus (Nile Tilapia). SUST Journal of Agricultural and Veterinary Sciences, 22 (1), 44-59. URL: https://www.researchgate.net/publication/350358198_Effect_of_Replacing_Fishmeal_with_Ground_nut_Cake_on_Growth_Feed_Conversion_and_Carcass_Composition_of_Fingerling_Oreochromis_niloticus_Nile_Tilapia.
  34. El-Sayed, Hassan El-Ebiary (2005). Use of soybean meal and/or corn gluten meal as partial substitutes for fishmeal in Nile tilapia (Oreochromis niloticus) fingering diets. Egyptian journal of aquatic research,31 (2), 432-442. URL: https://niof-eg.com/wp-content/uploads/2022/07/USE-OF-SOYBEAN-MEAL-AND-OR-CORN-GLUTEN-MEAL-AS.pdf.
  35. Wee, Kok Leong, &Shu, Shao-Wu (1989). The nutritive value of boiled full-fat soybean in pelleted feed for Nile tilapia. Aquaculture, 81 (3–4), 303-314. DOI: https://doi.org/10.1016/0044-8486(89)90155-5.
  36. Wilson, Robert P., &Poe, William E. (1985). Effects of feeding soybean meal with varying trypsin inhibitor activities on growth of fingerling channel catfish. Aquaculture, 46 (1), 19-25. DOI: https://doi.org/10.1016/0044-8486(85)90171-1.
  37. Venou, B., Alexis, M. N., Fountoulaki, E., &Haralabous, J. (2006). Effects of extrusion and inclusion level of soybean meal on diet digestibility, performance and nutrient utilization of gilthead sea bream (Sparus aurata). Aquaculture,261 (1), 343-356. DOI: https://doi.org/10.1016/j.aquaculture.2006.07.030.
  38. Cheng, Zongjia J., & Hardy, Ronald W. (2003). Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture, 218 (1–4), 501-514. DOI: https://doi.org/10.1016/S0044-8486(02)00458-1.
  39. Rahimnejad, Samad, Zhang, Jiao-Jin, Wang, Ling, Sun, Yunzhang, &Zhang, Chunxiao (2021). Evaluation of Bacillus pumillus SE5 fermented soybean meal as a fish meal replacer in spotted seabass (Lateolabrax maculatus) feed. Aquaculture, 531, 735975. DOI: https://doi.org/10.1016/j.aquaculture.2020.735975.
  40. Zhou, F., Song, W., Shao, Q., Peng, X., Xiao, J., Hua, Y., Owari, B. N., Zhang, T., & Ng, W. K. (2011). Partial replacement of fish meal by fermented soybean meal in diets for Black sea bream, Acanthopagrus schlegelii, juveniles. Journal of the World Aquaculture Society, 42, 184-197. DOI: https://doi.org/10.1111/j.1749-7345.2011.00455.x.
  41. Denstadli, Vegard, Hillestad, Marie, Verlhac, Viviane, Klausen, Mikkel, &Overland, Margareth (2011). Enzyme pretreatment of fibrous ingredients for carnivorous fish: Effects on nutrient utilisation and technical feed quality in rainbow trout (Oncorhynchus mykiss). Aquaculture, 319 (3–4), 391-397. DOI: https://doi.org/10.1016/j.aquaculture.2011.07.012.
  42. Shimaa, A. Amer, Shaimaa, A. A. Ahmed, Rowida, E. Ibrahim, Naif, A. Al-Gabri, Ali, Osman, &Mahmoud, Sitohy (2020). Impact of partial substitution of fish meal by methylated soy protein isolates on the nutritional, immunological, and health aspects of Nile tilapia, Oreochromis niloticus fingerlings. Aquaculture, 518, 734871. DOI: https://doi.org/10.1016/j.aquaculture.2019.734871.
  43. Ospina-Salazar, G. H., Ríos-Durán, M. G., Toledo-Cuevas, E. M., &Martínez-Palacios, C. A. (2016). The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Animal Feed Science and Technology, 220, 168-179. DOI: https://doi.org/10.1016/j.anifeedsci.2016.08.011.
  44. Olli, J. J., Krogdahl, Å., Ingh, T. S. G. A. M., & Brattås, I. E. (1994). Nutritive value of four soybean products in diets for Atlantic salmon (Salmo salar L). Acta Agric. Scand., Sect. A, Sci., 44, 50-60. DOI: https://doi.org/10.1080/09064709409410181.
  45. Estevan, Rafael, Sabioni, Evandro Kleber, Lorenz, José Eurico Possebon, Cyrino, &Helene, Volkoff (2022). Feed intake and gene expression of appetite-regulating hormones in Salminus brasiliensis fed diets containing soy protein concentrate. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 268, 111208. DOI: https://doi.org/10.1016/j.cbpa.2022.111208.
  46. Escaffre, Anne-Marie, Kaushik, Sadasivam, &Mambrini, Muriel (2007). Morphometric evaluation of changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) due to fish meal replacement with soy protein concentrate. Aquaculture, 273 (1), 127-138. DOI: https://doi.org/10.1016/j.aquaculture.2007.09.028.
  47. Hansen, Ann-Cecilie, Rosenlund, Grethe, Karlsen, Ørjan, Koppe, Wolfgang, &Hemre, Gro-Ingunn (2007). Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I — Effects on growth and protein retention. Aquaculture, 272 (1–4), 599-611. DOI: https://doi.org/10.1016/j.aquaculture.2007.08.034.
  48. Dias, J., Alvarez, M. J., Arzel, J., Corraze, G., Diez, A., Bautista, J. M., &Kaushik, S. J. (2005). Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 142 (1), 19-31. DOI: https://doi.org/10.1016/j.cbpb.2005.07.005.
  49. Stickney, Robert R., Hardy, Ronald W., Robert, Kim Koch, Seawright, Harrold Damon, &Massee, Kenneth C. (1996). The effects of substituting selected oilseed protein concentrates for fish meal in rainbow trout Oncorhynchus mykiss diets. Journal of the World Aquaculture Society, 27 (1), 57-63. DOI: https://doi.org/10.1111/j.1749-7345.1996.tb00594.x.
  50. Kaiser, Frederik, Harbach, Harvey,& Schulz, Carsten (2022). Rapeseed proteins as fishmeal alternatives: A review. Reviews in Aquaculture, 14 (4), 1887-1911. DOI: https://doi.org/10.1111/raq.12678.
  51. Davies, Simon J., McConnell, Stuart, &Bateson, Robert I. (1990). Potential of rapeseed meal as an alternative protein source in complete diets for tilapia (Oreochromis mossambicus Peters). Aquaculture, 87 (2), 145-154. DOI: https://doi.org/10.1016/0044-8486(90)90271-N.
  52. Gomes, Emidio F., Corraze, G., &Kaushik, S. (1993). Effects of dietary incorporation of a co-extruded plant protein (rapeseed and peas) on growth, nutrient utilization and muscle fatty acid composition of rainbow trout (Oncorhynchus mykiss). Aquaculture, 113 (4), 339-353. DOI: https://doi.org/10.1016/0044-8486(93)90404-M.
  53. Kaiser, Frederik, Harloff, Hans-Joachim, Tressel, Ralf-Peter, Graßl, Amelie Lara, Parsche, Florian, &Schulz, Carsten (2021). Fat encapsulation and supplementation with free amino acids cannot compensate for negative effects from dietary rapeseed protein isolate on growth performance of rainbow trout (Oncorhynchus mykiss). Aquaculture Reports, 20, 100702. DOI: https://doi.org/10.1016/j.aqrep.2021.100702.
  54. Teskeredžić, Z., Higgs, D. A., Dosanjh, B. S., McBride, J. R., Hardy, R. W., Beames, R. M., Jones, J. D., Simell, M., Vaara, T., & Bridges, R. B. (1995). Assessment of undephytinized and dephytinized rapeseed protein concentrate as sources of dietary protein for juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture, 131 (3–4), 261-277. DOI: https://doi.org/10.1016/0044-8486(94)00334-K.
  55. Szczepański, Adrian, Adamek-Urbańska, Dobrochna, Kasprzak, Robert, Szudrowicz, Hubert, Śliwiński, Jerzy, & Kamaszewski, Maciej (2022). Lupin: A promising alternative protein source for aquaculture feeds? Aquaculture Reports, 26, 101281. DOI: https://doi.org/10.1016/j.aqrep.2022.101281.
  56. De la Higuera, M., García-Gallego, M., Sanz, A., Cardenete, G., Suárez, M. D., & Moyano, F. J. (1988). Evaluation of lupin seed meal as an alternative protein source in feeding of rainbow trout (Salmo gairdneri). Aquaculture, 71 (1–2), 37-50. DOI: https://doi.org/10.1016/0044-8486(88)90271-2.
  57. Morales, A. E., Cardenete, G., De la Higuera, M., & Sanz, A. (1994). Effects of dietary protein source on growth, feed conversion and energy utilization in rainbow trout, Oncorhynchus mykiss. Aquaculture, 124 (1–4), 117-126. DOI: https://doi.org/10.1016/0044-8486(94)90367-0.
  58. Hughes, Steven G. (1991). Use of lupin flour as a replacement for full-fat soy in diets for rainbow trout (Oncorhynchus mykis). Aquaculture, 93 (1), 57-62. DOI: https://doi.org/10.1016/0044-8486(91)90204-K.
  59. Carter, C. G., & Hauler, R. C. (2000). Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture, 185 (3–4), 299-311. DOI: https://doi.org/10.1016/S0044-8486(99)00353-1.
  60. Robaina, L., Izquierdo, M. S., Moyano, F. J., Socorro, J., Vergara, J. M., Montero, D., & Fernández-Palacios, H. (1995). Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture, 130 (2–3), 219-233. DOI: https://doi.org/10.1016/0044-8486(94)00225-D.
  61. Øverland, M., Sørensen, M., Storebakken T., Penn, M., Krogdahl, Å., & Skrede, A. (2009). Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar) – Effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture, 288 (3–4), 305-311. DOI: https://doi.org/10.1016/j.aquaculture.2008.12.012.
  62. Mente, E., Degura, S., Santos, M. G., & Houlihan, D. (2003). White muscle free amino acid concentrations following feeding a maize gluten dietary protein in Atlantic salmon (Salmo salar L.). Aquaculture, 225 (1–4), 133-147. DOI: https://doi.org/10.1016/S0044-8486(03)00285-0.
  63. Sanz, A., Morales, A. E., De la Higuera, M., & Gardenete, G. (1994). Sunflower meal compared with soybean meals as partial substitutes for fish meal in rainbow trout (Oncorhynchus mykiss) diets: protein and energy utilization. Aquaculture, 128 (3–4), 287-300. DOI: https://doi.org/10.1016/0044-8486(94)90318-2.
  64. Tusche, K., Wuertz, S., Susenbeth, A., & Schulz, C. (2011). Feeding fish according to organic aquaculture guidelines EC 710/2009: Influence of potato protein concentrates containing various glycoalkaloid levels on health status and growth performance of rainbow trout (Oncorhynchus mykiss). Aquaculture, 319 (1–2), 122-131. DOI: https://doi.org/10.1016/j.aquaculture.2011.06.035.
  65. Reda, Rasha M., Maricchiolo, Giulia, Quero, Grazia Marina, Basili, Marco, Aarestrup, Frank M., Pansera, Lidia, Mirto, Simone, Abd El-Fattah Amir, H., Alagawany, Mahmoud, & Rahman, Afaf N. Abdel (2022). Rice protein concentrate as a fish meal substitute in Oreochromis niloticus: Effects on immune response, intestinal cytokines, Aeromonas veronii resistance, and gut microbiota composition. Fish & Shellfish Immunology, 126, 237-250. DOI: https://doi.org/10.1016/j.fsi.2022.05.048.
  66. Zaretabar, Amine, Ouraji, Hossein, Kenari, Abdolmohammad Abedian, Yeganeh, Sakineh, Esmaeili, Moha, & Amirkolaee, Abdolsamad Keramat (2021). One step toward aquaculture sustainability of a carnivorous species: Fish meal replacement with barley protein concentrate plus wheat gluten meal in Caspian brown trout (Salmo trutta caspius). Aquaculture Reports, 20, 100714. DOI: https://doi.org/10.1016/j.aqrep.2021.100714.
  67. Abel, H. J., Becker, K., Meske, C. H. R., & Friedrich, W. (1984). Possibilities of using heat-treated full-fat soybeans in carp feeding. Aquaculture, 42 (2), 97-108. DOI: https://doi.org/10.1016/0044-8486(84)90357-0.
  68. Viola, S., Mokady, S., & Arieli, Y. (1983). Effects of soybean processing methods on the growth of carp (Cyprinus carpio). Aquaculture, 32 (1–2), 27-38. DOI: https://doi.org/10.1016/0044-8486(83)90267-3.
  69. Viola, S., Mokady, S., Rappaport, U., & Arieli, Y. (1982). Partial and complete replacement of fishmeal by soybean meal in feeds for intensive culture of carp. Aquaculture, 26 (3–4), 223-236. DOI: https://doi.org/10.1016/0044-8486(82)90158-2.
  70. Murai, Takeshi, Daozun, Wang, & Ogata, Hiroshi (1989). Supplementation of methionine to soy flour diets for fingerling carp, Cyprinus carpio, Aquaculture, 77 (4), 373-385. DOI: https://doi.org/10.1016/0044-8486(89)90221-4.
  71. Escaffre, Anne M., Zambonino, Infante JoséL., Cahu, Chantal L., Mambrini, Muriel, Bergot, Pierre, & Kaushik, Sadasivam J. (1997). Nutritional value of soy protein concentrate for larvae of common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Aquaculture, 153 (1–2), 63-80. DOI: https://doi.org/10.1016/S0044-8486(97)00010-0.
  72. Erasmus, C. (2009). Chapter 17. Vegetable and cereal protein exploitation for fish feed. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Handbook of Waste Management and Co-Product Recovery in Food Processing, Woodhead Publishing, 412-437. DOI: https://doi.org/10.1533/9781845697051.3.412.
  73. Hardy, Ronald W. (2010). Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research, 41 (5), 770-776. DOI: https://doi.org/10.1111/j.1365-2109.2009.02349.x.
  74. Hari, B., Kurup, B. Madhusoodana, Varghese, Johny T., Schrama, J. W., & Verdegem, M. C. J. (2004). Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241 (1–4), 179-194. DOI: https://doi.org/10.1016/j.aquaculture.2004.07.002.