pdf35

Ribogospod. nauka Ukr., 2020; 2(52): 65-77
DOI: https://doi.org/10.15407/fsu2020.02.065
УДК: [639.3.09:639.5.09]:578

Nidoviral infections of fish and prawn: a review

L. Buchatsky, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
Yu. Rud, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
O. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
I. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences, Kyiv
I. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv

Purpose. Nidoviruses are wide spread pathogens of animals and humans. The order Nidovirales covers enveloped viruses with one segment of linear positive-sense single-stranded RNA. The order comprises four families including Coronaviridae, Arteriviridae, Roniviridae and Mesoniviridae. Despite numerous studies, Nidoviruses remain poorly understood today. The complexity of replication mechanisms and significant differences in genome size of individual families are the main problem to understand the life cycle of these viruses. Therefore, we tried to analyze the array of special literature data and summarize the information obtained on nidoviral infections of fish and prawns, structural and functional properties of the Nidovirales members, and the symptoms and consequences of diseases caused by them.

Findings. The presented data contain a brief analytical summary of viruses from the Nidovirales order, which infect fish and prawns. The current classification of water nidoviruses is noted. The morphological and genetic structure of fish nidoviruses as well as the known mechanisms of their replication and other functional properties are shown. Particular attention is paid to the description of symptoms and routes of nidovirus infection development in aquatic organisms. However, effective prevention and treatment of nidoviral infections is unknown. Currently, significant number of nidoviruses is insufficiently studied: partially or completely remain uncharacterized mechanisms of replication, genomic structure, the interactions with environment condition and virus spread, etc.

Practical Value. The review may be useful for scientists studying representatives of Nidovirales order and problems associated with diseases caused by these viruses. The description of disease symptoms will help in preliminary diagnosis of nidoviral infections in fish and prawns and raise awareness concerning its possible negative impact on aquaculture. Further development of knowledge about the morphological and molecular biological properties of nidoviruses, as well as the study of disease symptoms in aquatic organisms is promising direction for both purely biological aspects and for sustainable aquaculture.

Keywords: fish nidoviruses, shrimp nidoviruses, bafinivirus, okavirus, nidoviral infection, nidovirus genome.

REFERENCE

  1. 1. Makarov, V. V. (2010). Izbrannye voprosy obshchey epizootologii i infektologii-III. Moskva: RUDN, 182.
  2. Lai, M., & Cavanagh, D. (1997). The molecular biology of coronaviruses. Adv. Virus Res., 48, 1-100. https://doi.org/10.1016/S0065-3527(08)60286-9 
  3. Guan, Y., Zheng, B., YQ, H., & Liu, X., et al. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302, 276-278.https://doi.org/10.1126/science.1087139  
  4. Granzow, H., Weiland, F., Fichtner, D., Schütze, H., & Karger, A. (2001). Identification and ultrastructural characterization of a novel virus from fish.  J Gen Virol., 82, 2849-2859.https://doi.org/10.1099/0022-1317-82-12-2849
  5. Batts, W. N., Goodwin, A. E., & Winton, J. R. (2012). Genetic analysis of a novel nidovirus from fathead minnows.  J Gen Virol., 93, 1247-1252. https://doi.org/10.1099/vir.0.041210-0 
  6. Ulferts, R., Mettenleiter, T. C., & Ziebuhr, J. (2011). Characterization of Bafinivirus main protease autoprocessing activities. J Virol, 85(3), 1348-1359. https://doi.org/10.1128/JVI.01716-10 
  7. Iwanowicz, L. R., & Goodwin, A. E. (2002). A new bacilliform fathead minnow rhabdovirus that produces syncytia in tissue culture. Arch Virol., 147, 899-915.https://doi.org/10.1007/s00705-001-0793-z 
  8. Boonthai, T., Loch, T. P., Zhang, Q., Van Deuren, M. G., Faisal, M., Whelan, G. E., & Herbst, S. J. (2018). Retail Baitfish in Michigan Harbor Serious Fish Viral Pathogens. J Aquat Anim Health, 30(4), 253-263. https://doi.org/10.1002/aah.10034 
  9. Schütze, H., Ulferts, R., Schelle, B., Bayer, S., & Granzow, H. (2006). Characterization of White bream virus reveals a novel genetic cluster of nidoviruses. J Virol, 80, 11598-11609. https://doi.org/10.1128/JVI.01758-06 
  10. Faisal M., Baird, A., Winters, A. D., Millard, E. V., Marcquenski, S., Hsu, H. M., & Hennings, A., et al. (2018). Isolation of the Fathead Minnow Nidovirus from Muskellunge Experiencing Lingering Mortality. J Aquat. Anim. Health, 28(2), 131-141. https://doi.org/10.1080/08997659.2016.1159620 
  11. Baird, A., & Faisal, M. (2016). Fathead minnow nidovirus infects spotfin shiner Cyprinella spiloptera and golden shiner Notemigonus crysoleucas. Dis Aquat Organ, 12(119(1)), 37-44. https://doi.org/10.3354/dao02970 
  12. Chen, Xiao-yu, Zhou, Yong, Chen, Xin, Zheng, Jian, Zeng, Xian-dong, & Ji Feng Xu Li-ming. (2019). Isolation and genetic analysis of a nidovirus from crucian carp (Carassius auratus). Archives of Virology, 164, 1651-1654. https://doi.org/10.1007/s00705-019-04221-0 
  13. Lord, S. D., Raymond, M. J., Krell, P. J., Kropinski, A. M., & Stevenson, R. M. (2014). Novel chinook salmon bafinivirus isolation from ontario fish health monitoring. Proceedings of the seventh international symposium on aquatic animal health. Portland, Oregon, United States, 242.
  14. Mordecai, G. J., Miller, K. M., Di Cicco, E., & Schulze, A. D. et al. (2019). Endangered wild salmon infected by newly discovered viruses. eLife, 8, 47615. https://doi.org/10.7554/eLife.47615.062 
  15. Durzynska, I., Sauerwald, M., Karl, N., Madhugiri, R., & Ziebuhr, J. (2018). Characterization of a bafinivirus exoribonuclease activity. J. Gen Virol., 99, 1253-1260. https://doi.org/10.1099/jgv.0.001120 
  16. Ahne, W., Jiang, Y., & Thomsen, I. (1987). A new virus isolated from cultured grass carp Ctenopharyngodon idella. Disease of aquatic organisms, 3, 181-185. https://doi.org/10.3354/dao003181 
  17. Rappe, J. C. F., de Wilde, A., Di, H., Müller, C., Stalder, H., V'kovski, P., & Snijder, E., et al. (2018). Antiviral activity of K22 against members of the order Nidovirales. Virus Res., 246, 28-34. https://doi.org/10.1016/j.virusres.2018.01.002 
  18. Sano, T., Yamagaki, T., & Fukuda, H. (1988). A novel carp coronavirus: characterization and pathogenicity. International Fish Health Conference Vancuver, 160.
  19. Miyazaki, T., Okamoto, H., Kageyama, T., & Kobayashi, T. (2000). Viremia-associated ana-aki-byo, a new viral disease in color carp Cyprinus carpio in Japan. Dis Aquat Organ., 9, 39(3), 183-192. https://doi.org/10.3354/dao039183 
  20. Wijegoonawardanep, P., Cowley, J., & Phant, T., et al. (2008). Genetic diversity in the yellow head nidovirus complex. Virology, 380, 213-225. https://doi.org/10.1016/j.virol.2008.07.005 
  21. Chantanachookin, C., Boonyaratpalin, S., & Kasornchandra, J., et al. (1993). Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow-head disease. Dis. Aquat.Org., 17, 145-157. https://doi.org/10.3354/dao017145 
  22. Chayaburakul K., Nash G., Pratanpipat P., et al. (2004). Multiple pathogens found, Multiple Pathogens Found in Growth-Retarded Black Tiger Shrimp Penaeus Monodon Cultivated in Thailand. Dis Aquat Organ., Aug 9, 60(2), 89-96. https://doi.org/10.3354/dao060089 
  23. Flegel, T. W., Boonyaratpalin, S., & Withyachumnarnkul, B. (1997). Current status of research on yellow-head virus and white-spot virus in Thailand. Diseases in Asian Aquaculture III. Manila, The Philippines: Asian Fisheries Society, 285-296.
  24. Cowley, J. A., Hall, M. R., Cadogan, L. C., Spann, K. M., & Walker, P. J. (2002). Vertical transmission of gill-associated virus (GAV) in the black tiger prawn Penaeus monodon. Dis. Aquat. Org., 50, 95-104. https://doi.org/10.3354/dao050095 
  25. Chen, J., Wang, W., Wang, X., Zhang, Q., Ren, Y., Song, J., & Wang, X. (2018). First detection of yellow head virus genotype 3 (YHV-3) in cultured Penaeus monodon, mainland China. J Fish Dis, 41(9), 1449-1451. https://doi.org/10.1111/jfd.12826 
  26. Jahrome, S. S. (1977). Occurrence of rhabdovirus-like particles in the blue crab Callinectes sapidus. J.Gen.Virol., 36, 485-493. https://doi.org/10.1099/0022-1317-36-3-485 
  27. Wongteerasupaya, C., Sriurairatana, S., & Vickers, J., et al. (1995). Yellow-head virus of Penaeus monodon is an RNA virus. Dis. Aquat. Org., 22, 45-50. https://doi.org/10.3354/dao022045 
  28. Matjank, W., Ponprateep, S., Rimphanitchayakit, V., Tassanakajon, A., Somboonwiwat, K., & Vatanavicharn, T. (2018). Plasmolipin, PmPLP1, from Penaeus monodon is a potential receptor for yellow head virus infection. Dev Comp Immunol, 88, 137-143. https://doi.org/10.1016/j.dci.2018.07.021 
  29. Srisapoome, P., Hamano, K., Tsutsui, I., & Iiyama, K. (2018). Immunostimulation and yellow head virus (YHV) disease resistance induced by a lignin-based pulping by-product in black tiger shrimp (Penaeus monodon Linn.). Fish Shellfish Immunol, 72, 494-501. https://doi.org/10.1016/j.fsi.2017.11.037 
  30. Cowley, J. A., Dimmock, C. M., Spann, K. M., & Walker, P. J. (2000). Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. J Gen Virol., 81, 1473-1484. https://doi.org/10.1099/0022-1317-81-6-1473 
  31. Bossart, G., & Schwartz, J. (1990). Acute necrotizing enteritis associated with suspected coronavirus infection in three harbor seal (Phoca vitulina). J. Zoo Wildl. Med., 21, 84-87.
  32. Nollens, H. H., Wellehan, J. F., Archer, L., Lowenstine, L. J., & Gulland, F. M. (2010). Detection of a respiratory coronavirus from tissues archived during a pneumonia epizootic in free-ranging Pacific harbor seals Phoca vitulina Richardsii. Dis Aquat Organ., Jun 11, 90(2), 113-120. https://doi.org/10.3354/dao02190 
  33. Mihindukulasuriya, K. A., Wu, G., Leger, J. S., Nordhausen, R. W., & Wang, D. (2008). Identification of a Novel Coronavirus from a Beluga Whale by Using a Panviral Microarray. Journal of Virology, 82(10), 5084-5088. https://doi.org/10.1128/JVI.02722-07 
  34. Woo, Р., Lau, S., & Lam, C., et al. (2014). Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus. Journal of Virology, 88(2), 1318-1331. https://doi.org/10.1128/JVI.02351-13 
  35. Saberi, A., Gulyaeva, A., Brubacher, J. L., Newmark, P. A., & Gorbalenya, A. E. (2018). A planarian nidovirus expands the limits of RNA genome size. Plos Pathog., 14(11), e1007314. https://doi.org/10.1371/journal.ppat.1007314 
  36. Bukharia, A., Mulleya, G., & Gulyaeva, A., et al. (2018). Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. Virology, 524, 160-171. https://doi.org/10.1016/j.virol.2018.08.010 
  37. Gorbalenya, A. E., Enjuanes, L., Ziebuhr, J., & Snijder, E. J. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res., 117, 17-37. https://doi.org/10.1016/j.virusres.2006.01.017 
  38. Taylor, L. H., Latham, S. M., & Woolhouse, M. E. (2001). Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci., 356(1411), 983-989. https://doi.org/10.1098/rstb.2001.0888 
  39. Makarov, V. V., & Lozovoy, D. A. (2016). Koronavirusnye zoonozy, assotsiirovannye s rukokrylymi. Veterinariya segodnya, 2, 3-8.
  40. Malik, Y. S., Sircar, S., Bhat, S., Sharun, K., Dhama, K., Dadar, M., Tiwari, R., & Chaicumpa, W. (2020). Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q, 40(1), 68-76. https://doi.org/10.1080/01652176.2020.1727993