Ribogospod. nauka Ukr., 2016; 4(38): 35-41 
DOI: https://doi.org/10.15407/fsu2016.04.035
УДК 504.455:639.3

pdf35Calculation of the environmental capacity of cooling ponds for cage fish farming

N. Starco, This email address is being protected from spambots. You need JavaScript enabled to view it. ,  research institution «Ukrainian scientific research institute of ecological problems», Kharkov

Purpose. The determination of a maximum annual amount of fish reared in cagesm which does not result in the deterioration of the ecological state of water cooling ponds of the Zmiev Thermal Power Plant and Kursk Nuclear Power Plant series Ι and ΙΙ.

Methodology. The specific (per 1 ton of farmed fish) nutrient intake necessary for calculations was determined according to the data of own studies. For this purpose, we perfrormed the determination of the input of suspended solids into cooling ponds from cage lines. The calculation of mean fish weight increase during the period of trap exposition bsed on fish farm data allowed calculating the specific input of suspended solids from cages. The effect of artificial feeds and a mixture of feed resideus and fish of fishes collected under cages on water quality were evaluated in the condoitins of laboratory experiments. The effect of fish metabolites on water quality was taken into account according to literature data.

Findings. In the specific conditions of the investigated cooling ponds, the environmentally allowable concentrations of biogenic elements are established based on the mineral nitrogen content. With the mean volume of the Zmiev Thermal Power Plant of 40.5 million m3, the total amount of mineral nitrogen, which can be introduced with cage aquaculture residues, is 21.87 tons. When rearing one ton of fish in cages, 91.3 kg of mineral nitrogen get into the cooling pond. Thus, the environmental capacity of the Zmiev Thermal Power Plant cooling pond for cage fish farming is 281.7 tons. Accordingly, the allowable amounts of the production of cage fish farming for the Kursk NPP taking into account N content of 0.406 mgN/dm3 and volume of the cooling pond is 625.5 tons.

Originality. For the first time, we calculated the ecological capacity of cooling ponds of the Zmiev TPP and Kursk NPP, series I–II.

Practical value. Application of the results presented in the paper will allow creating and developing cage fish farms without disturbing the ecological state of cooling ponds of power plant, on the base of which they are created.

Keywords: cages fish farms, water cooling ponds, environmental capacity of water body for fish farming.

REFERENCES

  1. Avinskiy, V. A. (1990). Vydelenie i otsenka faktorov opredelyayushchikh kislorodnyy rezhim sadkovykh rybovodnykh khozyaystv (na primere Cherepetskogo rybkhoza). Sb. nauch. tr. GosNIORKh, 309, 92-104.
  2. Starko, N. V. (1990). Formirovanie kislorodnogo rezhima vodoemov-okhladiteley v rayonakh razmeshcheniya sadkovykh rybnykh khozyaystv. Vses. konf. mol. uch. Kiev : Institut gidrobiologii AN USSR, 150-151.
  3. Starko, N. V. (2008). Vliyanie sadkovogo rybovodstva na ekologicheskoe sostoyanie vodoemov-okhladiteley. Ekologіchna bezpeka: problemi і shlyakhi virіshennya. ΙV Mіzhnar. nauk.-prakt. konf : zb. nauk. st. (Vol. 1). Kharkov, 368-373.
  4. VNIIPRKh. (1979). Vremennye rybovodno-biologicheskie normativy dlya korrektirovki general'noy skhemy rybokhozyaystvennogo ispol'zovaniya sbrosnykh teplykh vod atomnykh elektrostantsiy i GRES. Moskva : VNIIPRKh.
  5. Grigor'ev, S. S., & Sedova N. A. (2008). Industrial'noe rybovodstvo (Part 1-2). Petropavlovsk-Kamchatskiy : KamchatGTU.
  6. Mhlanga, Lindah, Mhlanga, Wilson, & Mwera, Paul. (2013). Tհe application of a phosphorus mass balance model for estimating the carrying capacity of Lake Kariba. Turkish Journal of Veterinary and Animal Sciences, 37, 316-319.
  7. Sterligova, O. P., Kitaev, S. P., & Il'mast, N. V. (2012). Sostoyanie nekotorykh vodoemov Severnoy Karelii i ikh ispol'zovanie dlya tovarnogo vyrashchivaniya raduzhnoy foreli. Prikladnaya ekologiya Severa: trudy Kol'skogo nauchnogo tsentra RAN, 3 (10), 2, 40-46.
  8. Ordal, Beril, & Pulatsu, Serap. (2012). Using of the computer software for the sustainable rainbow trout cage culture: A case study in Goksekaya Dam Lake (Ankara, Turkey). Ege J Fish Aqua Sci., 29(1), 49-54.
  9. Postanovlenie ot 2 iyulya 2007 g. po delu № A07-88/2007. sudact.ru. Retrieved from sudact.ru/arbitral/doc/kbhKpmyoFfWJ.
  10. Litvinenko, A. I., & Krokhalevskiy, V. R. (2011). Fermerskoe rybovodstvo na Urale i v Sibiri. Sovremennoe sostoyanie i problemy razvitiya. Akvakul'tura tsentral'noy i vostochnoy Evropy: nastoyashchee i budushchee : II s’ezd NACEE (Seti Tsentrov po akvakul'ture v Tsentral'noy i Vostochnoy Evrope) i seminar o roli akvakul'tury v razvitii sela, Kishinev, 17-19 oktyabrya 2011 g. Kishinev : Pontos, 145-147.
  11. Antipchuk, A. F. (1983). Mikrobiologiya rybovodnykh prudov. Moskva : Legkaya i pishchevaya promyshlennost'. 145 p.
  12. Beveridge Malcolm C. M. (1984). Sage and pen farming. Carrying capacity models and environmental impact. FAO. Fish. Techn. Rap., 255.
  13. Ouens, M. (1977). Biogennye elementy, ikh istochniki i rol' v rechnykh sistemakh. Nauchnye osnovy kontrolya kachestva poverkhnostnykh vod po gidrobiologicheskim pokazatelyam. Leningrad : Gidrometeoizdat, 54-64.
  14. Starko, N. V. (2013). Udel'nye velichiny zagryazneniya vodoemov-okhladiteley pri vyrashchivanii ryby v sadkakh. Bioraznoobrazie i rol' zhivotnykh v ekosistemakh : VІІ Mezhdunarodnaya nauchnaya konferentsiya. Dnepropetrovsk : Adverta, 111-113.