Ribogospod. nauka Ukr., 2016; 1(35): 57-69
DOI: https://doi.org/10.15407/fsu2016.01.057
УДК: 575:595.384.12(540)

pdf35

MOLECULAR IDENTIFICATION AND BARCODING OF TWO SHRIMP SPECIES (PARAPENAEOPSIS SCULPTILLIS AND PARAPENAEOPSIS HARDWIKII) COLLECTED FROM GORAI CREEK OF MUMBAI, WEST COAST OF INDIA

G. Zodape, This email address is being protected from spambots. You need JavaScript enabled to view it. , Departments of Zoology, Shivaji University, Kolhapur
M. Tayade, This email address is being protected from spambots. You need JavaScript enabled to view it. , Departments of Zoology, S.S. & L.S. Patkar College of Arts and Science & V.P. Varde College of Commerce and Economics, Mumbai
G. Mehetre, This email address is being protected from spambots. You need JavaScript enabled to view it. , National Collection of Industrial Microorganisms, CSIR-NCL, Pune
M. Dharne, This email address is being protected from spambots. You need JavaScript enabled to view it. , National Collection of Industrial Microorganisms, CSIR-NCL, Pune

Purpose. Molecular identification of two shrimp species (Parapenaeopsis sculptillis and Parapenaeopsis hardwikii) from Gorai creek, Mumbai, west coast of India.

Methodology. The specimens of Shrimps Parapenaeopsis sculptillis and Parapenaeopsis hardwikii were collected from Gorai creek. The samples were morphologically identified as per the FAO guidelines manual and by using taxonomic keys. Genomic DNA was extracted from muscle tissue using DNA isolation kit (Hi Media, India). Molecular identification was carried out by using cytochrome oxidase subunit I (COI), gene sequencing by using specific primers LCO1490 and HCO2198. Phylogenetic tree was constructed by neighbour-joining method using mega 6 software to determine the relationship of the samples with known sequences in database.

Findings. The P. sculptillis and P. hardwikii showed closest sequence similarities with P. cornuta (84%) and Thysanopoda obtusifrons (83%). A phylogenetic tree was constructed based on COI gene, which separates the populations into thirteen stable clades. The results on DNA barcoding and current distribution of P. culptillis and P. hardwikii and their haplotype P. cornuta and Thysanopoda obtusifrons showed phylogenetic relationship among them, providing insights into the adaptive evolution of DNA sequences. The phylogenetic divergence analyses of the selected specie showed worldwide distribution because the above said species and their haplotype species showed complex sequence diversities that are having functional relevance with energy metabolism and environmental adaptation.

Originality. First attempt to use molecular genetic techniques for the identification of Parapenaeopsis sculptillis and Parapenaeopsis hardwikii and to compare their DNA sequences with other haplotype species such as P. cornuta and Thysanopoda obtusifrons.

Practical value. The obtained data can be used for shrimp species identification and studies of their phylogenetics and population genetics.

Keywords: species identification, barcoding, shrimp, phylogenetic, Gorai Creek.

REFERENCES

  1. Aliabadian, M., Beentjes, K. K., Roselaar, C. S., Brandwijk, H. V., Nijman, V., & Vonk, R. (2013). DNA barcoding of Dutch birds. Zookeys, 365, 25-48.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol., 215, 403-404.
  3. Arnot, D. E. et al. (1993). Digital codes from hypervariable tandemly repeated DNA sequences in the Plasmodium falciparum circumsporozoite gene can genetically barcode isolates. Mol. Biochem. Parasitol. 61, 15-24.
  4. Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Cambridge, MA : Harvard University Press.
  5. Barrett, D. H., & Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian J Zool, 83, 481-491.
  6. Blagoev, G. A., Nikolova, N. I., Sobel, C. N., Hebert, P. D. N., & Adamowicz, S. J. (2013). Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records. BMC Ecol, 13, 44.
  7. Cawthorn, D. M., Steinman, H. A., & Witthuhn, R. C. (2012). DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African market. Food Res Intr, 46, 30-40.
  8. CSIRO. (2013). Crustaceans unique colour control system. Eco. Sciences Precinct. Dutton Park, Australia.
  9. Floyd, R. et al. (2002). Molecular barcodes for soil nematode identification. Mol. Ecol. 11, 839-850.
  10. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar BiolBiotechnol., 3, 5, 294-299.
  11. Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA, 101, 14812-14817.
  12. Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biol, 2, 312.
  13. Hebert, P. D. N., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Syst. Biol., 54, 852-859.
  14. Hebert, P. D. N. et al. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Biol. Sci., 270, S96-S99.
  15. Hogg, I. D., & Hebert, P. D. N. (2004). Biological identifications of springtails (Hexapoda: Collembola) from the Canadian arctic, using mitochondrial barcodes. Canadian J Zool, 82, 749-754.
  16. Janzen, D. H, Hajibabaei, M., Burns, J. M., Hallwachs, W., Remigio, E., & Hebert, P. D. N. (2005). Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society. Biological Sci, 360B, 1835-1845.
  17. Kangethe, E. K. et al. (1982). Identification of the species origin of fresh meat using an enzyme-linked immunosorbent-assay procedure. Meat Sci., 7, 229-240.
  18. Kathirvel, M., Thirumilu, P., & Milton, M. C. J. (Ed.). (2011). Diversity in Indian Penaeoid shrimps. Perspectives of Animal Taxonomy and Systematics. Chennai, India : School of Biodiversity and Environmental Monitoring, Dept. of Advanced Zoology and Biotechnology, Loyola College, 136-158.
  19. Lakra, W. S., Verma, M. S., Goswami, M., Lal, K. K., Mohindra, V., Punia, P. et al. (2011). DNA barcoding Indian marine fishes. Mol Ecol Resour., 11, 1, 60-71.
  20. Liu, X. F., Yang, C. H., Han, H. L., Ward, R. D., & Zhzng, A. B. (2014). Identifying species of moths (Lepidoptera) from Baihua Mountain, Beijing, China, using DNA barcodes. Ecol Evol, 4, 2472-2487.
  21. Lobo, J., Costa, P. M., Teixeira, M. A. L., Ferreira, M. S. G., Costa, M. H., & Costa, F. O. (2013). Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol, 13-34.
  22. Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2011). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23, 4, 167-172.
  23. Montgomery, S. (2010). Biology and life cycles of prawns. Primefact, 268.
  24. Porco, D., Bedos, A., Greenslade, P., Janion, C., Skarzynski, D., Stevens, M. I. et al. (2012). Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding. Invertebrate Systematics, 26, 6, 470-477.
  25. Quan, J., Zhuang, Z., Deng, J., & Dai, J. (2004). Phylogenetic relationships of 12 Penaeoidea shrimp species deduced from mitochondrial DNA sequences. Biochem Genet., 42, 331-345.
  26. Rajkumar, G., Saravana, Bhavan P., Udayasuriyan, R., & Vadivalagan, C. (2015). Molecular identification of shrimp species, Penaeus semisulcatus, Metapenaeus dobsoni, Metapenaeus brevicornis, Fenneropenaeus indicus, Parapenaeopsis stylifera and Solenocera crassicornis inhabiting in the coromandel coast (Tamil Nadu, India) using MT-COI gene. IJFAS., 2, 4, 96-106.
  27. Ratnasingham, S., & Hebert, P. D. N. (2007). The Barcode of Life Data System. Mol Ecol Notes, 7, 3, 355-364.
  28. Schubart, C. D. (2009). Mitochondrial DNA and decapods phylogenies: the importance of pseudogenes and primer optimization. Decapod Crustacean Phylogenetics. Martin, J. W., Crandall, K. A., & Felder, D. L. (Eds.). Boca Raton, F. L. : CRC Press, Taylor & Francis Group, 47-65.
  29. Tibayrenc, M. (2005). Bridging the gap between molecular epidemiologists and evolutionists. Trends Microbiol. 13, 575-580.
  30. Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philos T Roy Soc B, 360, 1847-1857.