Ribogospod. nauka Ukr., 2015; 3(33): 18-33
DOI: https://doi.org/10.15407/fsu2015.03.018
УДК [597-1.05:597.553.2]:[546.19+546.49]

pdf35

EFFECT  OF  NON-ESSENTIAL  ELEMENTS  (MERCURY.  ARSENIC)  ON  SALMONIDS (SALMONIDAE)  (REVIEW)

І. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
D. Yanovych, This email address is being protected from spambots. You need JavaScript enabled to view it. , Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, Lviv
V. Bekh, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv 

Purpose. The problem of water ecosystem pollution with heavy metals achieved great actuality during recent years, both because of their significant distribution in environment, and wide spectrum of their toxic effects on fish organism. Much attention in modern scientific literature is given to the problem of the effects of heavy metals, including mercury and arsenic, on fish organism. However, investigations in this field are conducted mainly on cyprinids, while physiological and biochemical mechanisms of the effects of heavy metals on salmonids are less studied. According to this, the studies of the sources of heavy metals in water ecosystems, peculiarities of their action in salmonid organism on subcellular, cellular, tissue and organ levels, species and age-related peculiarities of the effects of heavy metals are of great scientific and practical importance. The purpose of this work is to review the mentioned problems.

Findings. The work characterizes the effects of mercury and arsenic on salmonids on subcellular, cellular, tissue and organ levels. The article contains characteristic of conditions, under which toxic or lethal action of the mentioned xenobiotics on different species of salmonids was observed.

Originality. The paper summarizes literature data concerning the effect of mercury and arsenic on salmonids. Attention is accented on the sources of the mentioned pollutants in surface waters, physiological and biochemical mechanisms of their effects on salmonids, and on factors, which determine the level of their toxicity. Lethal concentrations of mercury and arsenic to salmonids, depending on experiment duration, species and age-related peculiarities are presented.

Practical value. Data presented in the review can be used for the explanation of physiological and biochemical mechanisms of the adaptation of salmonids to surface water pollution with heavy metals, diagnostics of fish pathologies caused by toxic effects of mercury and arsenic, and complex assessment of factors, which influence the toxicity level of the mentioned pollutants in environment. 

Keywords: water ecosystems, mercury, arsenic, salmonids, toxicity, biomagnification, metabolism.

REFERENCES

1. Vorob'ev, V. I. (1993). Biogeokhimiya i rybovodstvo. Saratov : Litera.
2. Ostroumova, I. N. (2012). Biologicheskie osnovy kormleniya ryb. Sankt-Peterburg : GosNIORKh.
3. Komarovskiy, F. Ya., & Polishchuk, L. R. (1981). Rtut' i drugie tyazhelye metally v vodnoy srede: migratsii, nakoplenie, toksichnost' dlya gidrobiontov (Obzor). Gidrobiologicheskiy zhurnal, 5, 71-82.
4. Mur, Dzh., & Ramamurti, V. (1987). Tyazhelye metally v prirodnykh vodakh. Moskva : Mir.
5. Konovalov, Yu. D. (1999). Rtut' v organizme ryb (Obzor). Gidrobiologicheskiy zhurnal, 2, 74-89.
6. Sukhenko, S. A. (1995). Rtut' v vodokhranilishchakh: novyy aspekt antropogennogo zagryazneniya biosfery : analit. obzor. SO RAN. Institut vodnykh i ekologicheskikh problem.
7. Perevoznikov, M. A., & Bogdanova, E. A. (1999). Tyazhelye metally v presnovodnykh ekosistemakh. Sankt-Peterburg : GosNIORKh.
8. Hendricks, J. D. (2002). Adventitious toxins. Fish nutrition. San Diego : Academic Press, 601-649. 
9. Gochfeld, M. (2003). Case of mercury exposure, bioavailability and absorbtion. Ecotoxicology of Environment Safety, 56, 174-179. http://dx.doi.org/10.1016/S0147-6513(03)00060-5
10. Moiseenko, T. I. (2009). Vodnaya ekotoksikologiya. Teoreticheskie i prikladnye aspekty. Moskva : Nauka.
11. Handy, R. D. (2009). Dietary exposure to toxic metals in fish. Toxicology of aquatic pollution: physiological, molecular and cellular approaches. Cambridge : Cambridge University Press, 29-60.
12. Nemova, N. N. (2005). Biokhimicheskie effekty nakopleniya rtuti u ryb. Moskva : Nauka.
13. Zabotkina, E. A., Komov, V. T., & Stepanova, I. K. (2000). Vliyanie rtuti, soderzhashcheysya v kormakh, na sostoyanie perifericheskoy krovi ryb. Problemy okhrany zdorov'ya ryb v akvakul'ture: nauchno-prakticheskaya konferentsiya: tezisy. Moskva : Rossel'khozakademiya, 59-60.
14. Baatrup, E., & Danscher, G. (1987). Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication – differentiation of 2 mercury pools by selenium. Ecotoxicology of Environment Safety, 14, 129-141. http://dx.doi.org/10.1016/0147-6513(87)90055-8
15. Boudou, A., & Ribeyre, F. (1985). Experimental study of trophic contamination of Salmo gairdneri by 2 mercury-compounds – HgCl2 and CH3HgCl – analysis at the organism and organ levels. Water Air Soil Pollution, 26, 137-148. http://dx.doi.org/10.1007/BF00292064
16. Kidd, K., & Batchelar, K. (2012). Mercury. Homeostasis and toxicology of non-essential metals. London ; Waltham ; San Diego : Academic Press, 237-295.
17. Wobeser, G. (1975). Acute toxicity of methylmercury chloride and mercuric chloride for rainbow trout (Salmo gairdneri) fry and fingerlings. Journal of the Fisheries Research Board of Canada, 32, 2005-2013. http://dx.doi.org/10.1139/f75-236
18. McKim, J. M., Olson, G. F., & Holcombe, G. W., et al. (1976). Long-term effects of methylmercuric chloride on three generations of brook trout (Salvelinus fontinalis): toxicity, accumulation, distribution, and elimination. Journal of the Fisheries Research Board of Canada, 33, 2726-2739. http://dx.doi.org/10.1139/f76-324
19. Birge, W. T., Black, J. A., & Westerman, A. G., et al. (1979). The effects of mercury on reproduction of fish and amphibians. The Biogeochemistry of Mercury in the Environment. Amsterdam : Elsevier, 629-655.
20. Bykova, A. V. (1974). Vliyanie zagryazneniya vodoemov soedineniyami rtuti na gidrobiontov. Moskva : TsNIITEIRKh.
21. Gill, T. S.,  Tewari, H., & Pande, J. (1990). Use of the fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes. Comparative Biochemistry and Physiology, 97C, 287-292. http://dx.doi.org/10.1016/0742-8413(90)90143-w
22. Moran, P. W., Aluru, N., & Black, R. W., et al. (2007). Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington. Environmental Science and Technology, 41, 6591-6597. http://dx.doi.org/10.1021/es070550y
23. Servizi, J. A., & Martens, D. W. (1978). Effects of selected heavy metals on early life of sockeye and pink salmon. Progress report of International Pacific Salmon Fisheries Commission, № 39. New Westminster, Canada.
24. Alabaster, Dzh., & Lloyd, R. (1984). Kriterii kachestva vody dlya presnovodnykh ryb  (Erofeeva, M. P., Kozhin, S. V., Kuznetsov, V. V., & Tsvylev, O. P., Trans.). Moskva : Legkaya i pishchevaya promyshlennost'.
25. Metelev, V. V., Kanaev, A. I., & Dzasokhova, N. G. (1971). Vodnaya toksikologiya. Moskva : Kolos.
26. Konovalov, Yu. D. (1993). Svyazyvanie kadmiya i rtuti belkami i nizkomolekulyarnymi tiolovymi soedineniyami ryb. Gidrobiologicheskiy zhurnal, 1, 42-51.
27. Guseva, T. V. (Ed.). (2007). Gidrokhimicheskie pokazateli sostoyaniya okruzhayushchey sredy: spravochnye materialy. Moskva : FORUM ; INFRA-M.
28. McIntyre, D. O., & Linton, T. K. (2012). Arsenic. Homeostasis and toxicology of essential metals. London ; Waltham ; San Diego : Academic Press, 298-348.
29. Spehar R. L., & Fiandt, J. T. (1986). Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species. Environ. Toxicol. Chem., 5, 917-931. http://dx.doi.org/10.1002/etc.5620051008
30. Buhl, K. J., & Hamilton, S. J. (1990). Comparative toxicity of inorganic contaminants released by placer mining to early life stages of salmonids. Ecotoxicol. Environ. Saf., 20, 325-342. http://dx.doi.org/10.1016/0147-6513(90)90010-3
31. Buhl, K. J., & Hamilton, S. J. (1991). Relative sensitivity of early life stages of Arctic grayling, coho salmon, and rainbow trout to nine inorganics. Ecotoxicol. Environ. Saf., 22, 184-197. http://dx.doi.org/10.1016/0147-6513(91)90058-W
32. Cardwell, R. D., Foreman, D. G., & Payne, T. R., et al. (1976). Acute toxicity of selected toxicants to six species of fish. Duluth, MN : United States environmental protection agency.
33. Mayer, F. L. J., & Ellersieck, M. R. (1986). Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Washington, DC : United States Department of the Interior.
34. Rankin, M. G., & Dixon, D. G. (1994) Acute and chronic toxicity of waterborne arsenite to rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci, 51, 372-380. http://dx.doi.org/10.1139/f94-038
35. Speyer, K. R. (1974). Some effects of combined chronic arsenic and cyanide poisoning on the physiology of rainbow trout : MS thesis. Montreal : Concordia University.
36. McGeachy, S. M., & Dixon, D. G. (1990). Effect of temperature on the chronic toxicity of arsenate to rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci., 47, 2228-2234. http://dx.doi.org/10.1139/f90-247
37. Oladimeji, A. A., Qadri, S. U., & DeFreitas, A. S. W. (1984). Long-term effects of arsenic accumulation in rainbow trout, Salmo gairdneri. Bull. Environ. Contam. Toxicol, 32, 732-741. http://dx.doi.org/10.1007/BF01607564 
38. Cockell, K. A., Hilton, J. W., & Bettger, W. J. (1991). Chronic toxicity of dietary disodium arsenate heptahydrate to juvenile rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol, 21, 518-527. http://dx.doi.org/10.1007/BF01183873
39. Pedlar, R. M., & Klaverkamp, J. F. (2002). Accumulation and distribution of dietary arsenic in lake whitefish (Coregonus clupeaformis). Aquat. Toxicol, 57, 153-166. http://dx.doi.org/10.1016/S0166-445X(01)00197-7
40. Pedlar, R. M., Ptashynski, M. D., & Evans R., et al. (2002). Toxicological effects of dietary arsenic exposure in lake whitefish (Coregonus clupeaformis). Aquat. Toxicol, 57, 167-189. http://dx.doi.org/10.1016/S0166-445X(01)00198-9
41. Davey, J. C., Bodwell, J. E., & Gosse, J. A., et al. (2007). Arsenic as an endocrine disruptor: effects of arsenic on estrogen mediated gene expression in vivo and in cell culture. Toxicol. Sci, 98, 75-86. http://dx.doi.org/10.1093/toxsci/kfm013
42. Kotsanis, N., Iliopoulou-Georgudaki, J., & Kapata-Zoumbos, K. (2000). Changes in selected haematological parameters at early stages of the rainbow trout, Oncorhynchus mykiss, subjected to metal toxicants: arsenic, cadmium and mercury. J. Appl. Ichthyol., 16, 276-278.  http://dx.doi.org/10.1046/j.1439-0426.2000.00163.x
43. Baeyens, W., De Brauwere, A., & Brion, N., et al. (2007). Arsenic speciation in the River Zenne, Belgium. Sci. Total Environ, 38, 409-419. http://dx.doi.org/10.1016/j.scitotenv.2007.05.044
44. Ikemoto, T., Phuc Cam, T. N., & Okuda, N., et al. (2008). Biomagnification of trace elements in the aquatic food web in the Mekong Delta, South Vietnam using stable carbon and nitrogen isotope analysis. Arch. Environ. Contam. Toxicol, 54, 504-515. http://dx.doi.org/10.1007/s00244-007-9058-5
45. Culioli, J.-L., Fouquoire, A., & Calendini, S., et al. (2009). Trophic transfer of arsenic and antimony in a freshwater ecosystem: A field study. Aquat. Toxicol, 94, 286-293. http://dx.doi.org/10.1016/j.aquatox.2009.07.016
46. Oladimeji, A. A., Quadri, S. U., & Tam, G. K. H., et al. (1979). Metabolism of inorganic arsenic to organoarsenicals in rainbow trout. Ecotoxicology and environmental safety, 3, 394-400. http://dx.doi.org/10.1016/0147-6513(79)90029-0
47. McGeachy, S. M., & Dixon, D. G. (1989). The impact of temperature on the acute toxicity of arsenate and arsenite to rainbow trout (Salmo gairdneri). Ecotoxicol. Environ. Saf., 17, 86-93. http://dx.doi.org/10.1016/0147-6513(89)90012-2
48. Gailer, J. (2007). Arsenic-selenium and mercury-selenium bonds in biology. Coord. Chem. Rev., 251, 234-254. http://dx.doi.org/10.1016/j.ccr.2006.07.018
49. Amlund, H., Ingebrigsten, K., & Hylland, K., et al. (2006). Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C]arsenobetaine. Comp. Biochem. Physiol., C 143, 171-178. http://dx.doi.org/10.1016/j.cbpc.2006.01.007
50. Amlund, H., Francesconi, K. A., & Bethune, C., et al. Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Environ. Toxicol. Chem., 25, 1787-1794. http://dx.doi.org/10.1897/05-107R1.1