Ribogospod. nauka Ukr., 2015; 1(31): 96-107
DOI: https://doi.org/10.15407/fsu2015.01.096
УДК 591.3:597.55.2: [574.2:577.151]



А. Vodyanitskyi, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of hydrobiology of NAS, Kуiv
А. Potrokhov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of hydrobiology of NAS, Kуiv
О. Zinkovskyi, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of hydrobiology of NAS, Kуiv

Purpose. To determine the effect of temperature regime fluctuations on the development of silver carp embryos, as well as the activity of enzymatic reactions in fish eggs.

Methodology. The studies were conducted at the experimental station of the Institute of Hydrobiology of Bila Tserkov, Ukrainian National Academy of Sciences, from June to July. The biological materials were silver carp eggs, embryos and larvae. The dissolved oxygen content was determined using the Winkler method at four o’clock in the morning. Alkalinity phosphatase and LDG activity were determined using a set of reagents «Alkalinity phosphatase» and «LDG» (Phyllis diagnosis, Ukraine). SDH activity was determined by Vexy. The activity of Na, K-Mg-dependent-activated ATPase was determined as growth of inorganic phosphorus in the incubation medium by Kindratova M.N. et al. Protease activity was determined using immune enzymatic method of Tyurina et al. The obtained results were processed statistically in Statistica 5.5, Epaprobit analysis was used for calculating LC/EC values (Version 1.5).

Findings The results showed that a delay of embryonic stages of development occur, the number of abnormal embryos increases, and the reproduction efficiency of fish reduces with an increase in water temperature and decrease in the dissolved oxygen content in water. The temperature factor had a significant effect on the activity of key enzymes, in particular the energetic metabolism changed from aerobic to anaerobic.

Originality. It was found a negative effect of abiotic factors of water medium and drastic fluctuations in water temperature and gas regime of water bodies on the course of embryogenesis of silver carp that is especially important in the conditions of climate change.

Practical value. The obtained results showed that the level of optimum and unfavorable environmental factors during the change of embryonic stages in embryonic and larval fish can be established based on the activity of lactate dehydrogenase, succinate dehydrogenase, ATPase and protease.

Keywords: embryonic development, silver carp (Hypophthalmichthys molitrix), fluctuations of temperature regime in water bodies, enzymatic activity.


1. Romanenko V. D. (2004). Osnovy gidrojekologii. Kyiv: Geneza.
2. Shatunovskij M. I. (1988). fiziologo-biohimicheskih indikatorov sostojanija  ryb vodoemah-ohladiteljah jenergeticheskih obektov. Metody bioindikacii okruzhajushhej sredy rajonah AJeS. Moskva.
3. Janauer G. A. (2012). Aquatic vegetationin river floodplains: climate change effects, river restorationand ecohydrology aspects/ Climate change. Inferences from Paleoclimate and Regional Aspectsp. NewYork: Springir.
4. Luk'janenko V. I. Jekologicheskie aspekty ihtiotoksikologii. Moskva: Agropromizdat.
5. Hochachka P. W. & Somero G. N. Biochemical adaptations. Princeton University Press, USA.
6. Khillare Y. K.& Wagh S. B. (1989). Effect of cold stress of theglycigenand-ascorbic acid content of Barbus stigma (Ham.). Geobios (India), 16, 47–48.
7. Konstantinov A. S. & Zdanovich V. V. (1986). Nekotorye osobennosti rosta ryb pri peremennyh temperaturah. Vopr. Ihtiol, 26,448–456.
8. Alabaster J. S.& Lloyd R. (1980). Water quality criteria for fresh water fish. London: Butter-Worth. 297–365.
9. Lemly A. D. (1996). Winter stress syndrome: an important consideration for hazardas sessment of aquatic pollutants. Ecotoxicol. Environ. Saf., 34 (3)223–227. http://dx.doi.org/10.1006/eesa.1996.0067
10. Storey K. B. & Storey J.M. (1990). Facultative metabolic ratede pression: molecularre gulation and biochemical adaptation in anaerobiosis, hibernation, andestivation. Q. Rev. Biol., 65, 145–174. http://dx.doi.org/10.1086/416717
11. Tatrai I. & Penczak T. (1985). Influence of temperature of reeding on nitrogen metabolism of juvenile bream (Abramis brama). Comp. Biochem. AndPhysiol., 82, № 1, 125–129. http://dx.doi.org/10.1016/0300-9629(85)90715-7
12. Tripathi G. & Verma P. (2004). Sex-specific metabolic changes in the annual reproductive cycle of a freshwater catfish. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 137(1), 101–106. http://dx.doi.org/10.1016/j.cbpc.2003.10.005
13. Hochachka P. W. Somero G. N. (2002). Biochemical Adaptation: Mechanism and Processin Physiological Evolution. Oxford: Oxford University Press.
14. Lav R. M. (1976). Himicheskaja biologija ryb. Moskva: Pishhevaja prom-st'.
15. Kornienko G. G., Bojko N. E. & Bugaevi L. A. dr. (2005). Fiziologo-biohimicheskiei geneticheskie issledovanija ihtiofauni Azovo-chernomorsko gobassejna. Metodicheskoe rukovodstvo. Rostov-na-Donu: Jeverest. 
16. Asatiani V. S. (1965). Novye metody biohimicheskoj fotometrii. M.: Nauka, 1965.
17. Tjurin Ju. A., Kulikov S. N., Fassahov R. S., Dolbin D.A ., Bajazitova  L.T. (2009). Sposob opredelenija IgG-proteinaznoj aktivnosti. Pat. 2373538 Rossijskaja Federacija. Bjul. № 32.
18. Lebedeva O. A. (1983). Vlijanie abioticheskih faktorov sredy na rannij ontogenez kostistyh ryb (Teleostei). Problemy rannego ontogeneza ryb. Tezisy dokladov ІІІ Vsesojuznogo soveshhanija 25-26 maja 1983 g. Kaliningrad. 57–58.