Ribogospod. nauka Ukr., 2014; 1(27): 52-67
DOI: https://doi.org/10.15407/fsu2014.01.052
УДК 575.15; 639.3.032

pdf35

MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

I. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
O. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
I. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences of Ukraine, Kуiv
N. Borysenko, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv

Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability.

Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers.

Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application.

Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

Key words: molecular genetic markers, molecular genetics methods, PCR, DNA, microsatellites.

REFERENCES

1. Hrytsynyak I. I. Aktual'ni zavdannya henetychnykh doslidzhen' u rybnomu hospodarstvi / I.I. Hrytsynyak, S. I. Tarasyuk // Problemy rozvytku mors'koyi ta prisnovodnoyi akvakul'tury : materialy seminaru / Derzhavnyy komitet rybnoho hospodarstva Ukrayiny. — K., 2009. — S. 98—106.
2. Orhanizatsiya selektsiyno–pleminnoyi roboty v rybnytstvi / [Hrynzhevs'kyy M. V., Sherman I. M., Hrytsynyak I. I. ta in.]. — K. : Rybka moya, 2006. — 352 s.
3. IlhanAltinok. MolecularDiagnosisOfFishDiseases: AReview / IlhanAltinok, IlknurKurt // TurkishJournalOfFisheriesAndAquatic Sciences. — 2004. — 3. —Р. 131—138.
4. Avise J. Molecular markers, natural history and evolution / Avise J. — Champan & Hall. ITP International Thomson Pub. Comp. USA, 2003.— 511 р.
5. Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar)/Susan E. Johnston, Meri Lindqvist, Eero Niemelä [et al.] // BMC Genomics. — 2013. — Vol. 14. — P. 439—445.
6. Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales / M. J. Smith, C. E. Pascal, Z. Grauvogel [et al.] // Mol. Ecol. Resour. — 2011. — № 11. — Р.268—277.
7. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries / C. P. Van Tassell, T. P. Smith, L. K. Matukumalli [et al.] // Nat Methods. — 2008. — № 5. — Р.247—252.
8. Highly cost–efficient genome–wide association studies using DNA pools and dense SNP arrays / S. Macgregor, Z. Zhao, A. Henders [et al.] // Nucleic Acids Res. — 2008. — № 36. — Р. 35—39.
9. Single–nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms / J. Seeb, G. Carvalho, L. Hauser [et al.] // Mol. Ecol. Resour. — 2011. — № 11. — Р. 1—8.
10. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua / N. Therkildsen, J. Hemmer–Hansen, R. Hedeholm [et al.] // Evol. Appl. — 2013. — №6. —Р. 690—705.
11. Guo B. Pervasive indels and their evolutionary dynamics after the fish–specific genome duplication / B. Guo, M. Zou, A. Wagner //Mol. Biol. Evol. — 2012. — № 10. — Р. 3005—3012.
12. Heterozygous indels as useful tools in the reconstruction of DNA sequences and in the assessment of ploidy level and genomic constitution of hybrid organisms / Cаrla Sousana–Santos, Joana I. Robalo, Maria–Joa O Collares–Pereira [et al.] // DNA Sequence. — 2005. — Vol. 16,6. — Р. 462—467.
13. A sequence–based variation map of zebrafish / A. Patowary, R.Purkanti, M.Singh [et al.] // Zebrafish.2013. — Vol. 10,1. — P. 15—20.
14. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs / M. H. Li., H. H. Yang, M. R. Li [et al.] // Endocrinology. — 2013. — Dec., Vol. 154,12:48. — P. 14—25.
15. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers / D. Tautz. — Nucleic Acids Res. — 1989. — Vol. 17. — . 6463—6471.
16. Field D. Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces / D. Field, C. Wills // Proceedings of the National Academy of Sciences of the United States of America. — 1998. — Vol. 95. — Р. 1647—1652.
17. A common language for physical mapping of the human genome/ M. OlsonL. Hood, C. Cantor [et al.] // Sciences. — 1989. — Vol. 245,4925. — P. 1434—1435.
18.Use of ethnicity–specific sequence tag site markers for Y chromosome microdeletion studies / K. Sachdeva, R. Saxena, A. Majumdar [et al.] // Genet Test Mol Biomarkers. — 2011. — Vol. 15,6. — P. 451—459.
19. Mikrosatellite markers in common carp (Cyprinus carpio L.) / R. Сrooijmans, V. Bierbooms, J. Komen [et al.] // Animal Genetics. — 1997. — Vol. 28. — P. 129—134.
20. Michael O Connell. Microsatellite DNA in fishes / Michael O Connell, Jonathan M Wright // Reviews in Fish Biology and Fisheries. — 1997. — № 7. —Р. 331—363.
21. Zhang Xiao–Gu. Applications of microsatellite markers in studies of genetics and breeding of fish / Xiao–Gu Zhang, Jin–Gou Tong, Bang–Xi Xiong // Chinese Journal of Agricultural Biotechnology. — 2006. — № 3. — Р. 83—87.
22. Javier P. Development of a microsatellite genotyping tool for the fish Gilthead seabream (Sparus aurata): applicability in population genetics and pedigree analysis / P. Javier, M. Jose, B. Julia // Aquaculture Research. — 2010. — № 41. — Р. 1514—1522.
23. Isolation and characterization of microsatellite loci in the fish Coilia mystus (Clupeiformes: Engraulidae) using PCR–based isolation of microsatellite arrays / J. Yang,X. Zhou, D.Liu [et al.] / Genet. Mol. Res. — 2011. — Vol. 10,3. — P. 1514—1517.
24. Chromosomal mapping of microsatellite repeats in the rock bream fishOplegnathus fasciatus, with emphasis of their distribution in the neo–Y chromosome / Dongdong Xu,Bao Lou, Luiz Antonio Carlos Bertollo [et al.] // Molecular Cytogenetics. — 2013. — №6. — Р. 1755—1766.
25. Ellegren H. Microsatellites: simple sequences with complex evolution / H. Ellegren // Nature Reviews Genetics. — 2004. — 5. — P. 435—445.
26. Characterization of microsatelllite loci in silver carp (Hypophthalmichthys molitrix) and cross–amplification in other cyprinid species / A. A.Gheyas,M. Cairney, A. E. Gilmour [et al.] // Molecular Ecology Notes (Accepted). — 2006. № 3. — Р. 455—461.
27. Mosaic small supernumerary marker chromosome 1 at amniocentesis: prenatal diagnosis, molecular genetic analysis and literature review / CP Chen, M. Chen, YN Su [et al.] // Gene. — 2013. — Vol. 15;529,1. — P. 169—175.
28. Chromosome studies of European cyprinid fishes: cross–species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomesM. Knytl, L. Kalous, R. Symonová [et al.] // Cytogenet Genome Res. — 2013. — Vol. 139,4. — P. 276—283.
29. Loss of eyes in zebrafish caused by mutation of chokh/rx3 / F. Loosli, W. Staub, K. Finger–Baier [et al.] // EMBO Rep. — 2003. — Vol. 4,9. ― Р. 894—899.
30. Hummel S. Ancient DNA typing: Methods, strategies and applications /Hummel S. — New York: Springer–Verlag, 2003. — 298 p. http://dx.doi.org/10.1007/978-3-662-05050-7
31. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple–sequence repeats / M. Gupta, Y. S. Chyi, J. Romero–Severson [et al.] // Theoret. Appl. Genet. — 1994. — 89. — P. 998—1006.
32. Comparison of FISH and quantitative RT–PCR for the diagnosis and follow–up of BCR–ABL–positive leukemias / F. Bao, R. Munker, C. Lowery [et al.] // Mol. Diagn. Ther. — 2007. — Vol. 11,4. — Р. 239—245.
33. Vergnaud G. Minisatellites: Mutability and Genome Architecture./ G. Vergnaud, F. Denoeud // Genome Research. — 2000. — 10. — P. 899—907.
34. Allele–specific PCR in SNP genotyping / M. Gaudet, AG. Fara, I. Beritognolo [et al.] // Methods Mol. Biol.2009. — Р. 415—424.
35. Rare allele enrichment and detection by allele–specific PCR, competitive probe blocking, and melting analysis / Z. Luming, W. Ying, Carl T. Wittwer // BioTechniques. — 2011. — Vol. 50, № 5. — Р. 311—318.
36. MicroRNA–146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection / A.Ordas, Z.KanwalV.Lindenberg [et al.] //BMC Genomics. — 2013. — 14. — P. 696—701.
37. SYBR, TaqMan, or both: highly sensitive, non–invasive detection of Cardicola blood fluke species in Southern Bluefin Tuna (Thunnus maccoyii)/ M. Polinski, D. Hamilton, B. Nowak [et al.] // Mol. Biochem. Parasitol. — 2013. — Vol. 191,1. Р. 7—15.
38. Balakrishnan L. Flap Endonuclease 1. / L. Balakrishnan, Robert A. Bambara // Annual Review of Biochemistry. — 2013. — № 82. — Р. 119—138.
39. Flap endonucleases pass 5–flaps through a flexible arch using a disorder–thread–order mechanism to confer specificity for free 5–ends /Nikesh Patel, John M. Atack, Jane A. Grasby // Oxford JournalsLife SciencesNucleic Acids Research. — 2013. — № 40. — P. 4507—4519.
40. Cloning and gene map assignment of the Xiphophorus DNA ligase 1 geneR. Walter, R. Rolig, K. Kozak [et al.] / Mol. Biol. Evol.— 1993. — Vol. 10,6. Р. 1227—1238.
41. Embryonic exposure to cis–bifenthrin enantioselectively induces the transcription of genes related to oxidative stress, apoptosis and immunotoxicity in zebrafish (Danio rerio) / Y. Jin, X. Pan, L. Cao [et al.] //FishShellfish Immunol. — 2013. — Vol. 34,2. Р. 717—723.
42. Development of novel visual–plus quantitative analysis systems for studyingDNAdouble–strand break repairs in zebrafish / J. Liu, L. Gong, C. Chang [et al.] // Genet. Genomics. — 2012. — Vol. 39,9.Р. 489—502.
43. Identification of genes that promote or antagonize somatic homolog pairing using a high–throughputFISH–based screen/ E. Joyce, B. Williams, T. Xie[et al.] // PLoS Genet. — 2012. — Vol. 8,5. — P. 567—574.
44. Brown B. Nuclear DNA. Population Genetics: Principles and Applications for Fisheries Scientists / B. Brown, J. Epifanio; ed. E. M. Hallerman ― Bethesda, Maryland, USA, Amer. Fish. Society. — 2003. — P. 101—126.
45. Male infertility and copy number variants (CNVs) in the dog: a two–pronged approach using Computer Assisted Sperm Analysis (CASA) and Fluorescent In SituHybridization(FISH)/ D. Cassatella, N. Martino, L. Valentini [et al.] // BMC Genomics. — 2013. — Dec. 27; Vol. 14,1. — P. 921—926.
46. Introgressivehybridizationas a promoter of genome reshuffling in natural homoploidfishhybrids (Cyprinidae, Leuciscinae)/ C. S. Pereira, M. A. Aboim, P. Ráb [et al.] // Heredity (Edinb). — 2013. № 4. Р. 110—118.
47. Hybridisation, paternal leakage and mitochondrialDNAlinearization in three anomalousfish(Scombridae)/ J. A. Morgan, M. Macbeth, D. Broderick [et al.] // Mitochondrion. — 2013. — Vol. 13,6 Р. 852—861.
48. Mapping nonrecombining regions in barley using multicolorFISHM. Karafiаtovа, J. Bartos, D. Kopecky [et al.] // Chromosome Res. 2013. ― Vol. 21,8. ― Р. 739―751.
49. Ravindra Kumar.Characterization and physical mapping of 18S and 5S ribosomal genes in Indian major carps (Pisces, Cyprinidae)/ K. Ravindra, B. Kushwaha, N. S. Nagpure // Micron. — 2013. 49. Р. 40—45.
50. Gamble T.Identification of sex–specific molecular markers usingrestrictionsite associatedDNAsequencing (RAD–seq)/ T. Gamble, D. Zarkower // Mol. Ecol. Resour. — 2014. 10.Р. 675—780.
51. Carbonari M. Correlation between terminalrestrictionfragments and flow–FISHmeasures in samples over wide range telomere lengths/ M. Carbonari, T. Tedesco, M. Fiorilli // Cell Prolif. — 2014. Vol. 47,1.Р. 20—27.
52. Pericentromeric location of the telomericDNAsequences on the European grayling chromosomes/ K. Ocalewicz, G. Furgala–Selezniow, M. Szmyt [et al.] // Genetica. — 2013. — Vol. 141,10–12.Р. 409—416.
53. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis / E. M. Southern // J. Mol. Biol. — 1975. — Vol. 98,3. — P. 503—517.
54. John M. Butler. Forensic DNA typing biology, technology, and genetics of STR markers / John M. Butler. — [Second edition]. — USA : Elsevier, 2005 — 345 p.
55.   New perspectives on diastereoselective determination of hexabromocyclododecane traces infishby ultra high performance liquid chromatography–high resolution orbitrapmass spectrometry / D. Zacs, J.Rjabova, V.Bartkevics [et al.] //J. Chromatogr.— 2014. 21. Р. 1330—1339.
56. Asakawa M. Food poisonings by ingestion of cyprinidfish / M. Asakawa, T.Noguchi//Toxins (Basel).2014. —Vol. 6,2. Р. 539—555.
57. Biliary PAH metabolites, EROD activity andDNAdamage in dab (Limanda limanda) from Seine Estuary (France)/ M. H. Devier, M. Le Du–Lacoste, F. Akcha [et al.] // Environ. Sci. Pollut. Res. Int. — 2013. — Vol. 20,2. Р. 708—722.
58. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish/ L. Levi, T. Ziv, A. Admon [et al.] // Am. J. Physiol. Endocrinol. Metab.— 2012. — Vol. 302,6.Р. 626—644.
59. Deeptranscriptomesequencingof Pecten maximus hemocytes: A genomic resource for bivalve immunology/ M. Pauletto, M. Milan, R. Moreira [et al.] //FishShellfish Immunol.— 2014.Vol. 37, №1. — Р. 154—165.
60. De novo whole transcriptome analysis of thefishlouse, Argulus siamensis: first molecular insights into characterization of Toll downstream signalling molecules of crustaceans/ P. Sahoo, B. Kar, A. Mohapatra [et al.] // Exp. Parasitol. — 2013. — Vol.135,3. Р. 629—641.
61. The identification of microRNAs in the whitespotted bamboo shark (Chiloscyllium plagiosum) liver by Illuminasequencing/ J. Zhang, Y. Liu, X. Zhang [et al.] // Gene. — 2013. —Vol. 527,1.Р. 259—265.
62. DeepmRNAsequencinganalysis to capture the transcriptome landscape of zebrafish embryos and larvae/ H. Yang, Y. Zhou, J. Gu [et al.] // PLoS One. — 2013. — Vol.8,5. Р. 456—464.