Ribogospod. nauka Ukr., 2020; 4(54): 78-110
DOI: https://doi.org/10.15407/fsu2020.04.078 
УДК: 597-12:551.583


Yu. Rud, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
O. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
L. Buchatsky, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv
I. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries of NAAS of Ukraine, Kyiv

Purpose. As the climate change impacts freshwater and marine ecosystems, and rising ocean temperatures and acidification continue to this moment, our aim was to analyze the literature and summarize information on the development of fish infectious diseases in the light of global warming.

Findings. Even a slight increase in temperature affects the life cycle, physiology, behavior, distribution and structure of populations of aquatic bioresources, especially fish. Recent studies show that some infectious diseases of fish spread much faster with increasing temperature. Climate change contributes to pathogens spread in both marine and freshwater areas. In particular, rising water temperatures can expand the range of diseases. Aquatic bioresources have high cumulative mortality from infectious diseases, and pathogens are rapidly progressing, and these phenomena may be powered by climate change, leading to the geographical spread of virulent pathogens to fisheries and aquaculture facilities, threatening much of global production and food security. The article presents data on the impact of climate change and global warming on aquaculture and fisheries. The list of the main pathogens of fish of various etiology in Ukraine, including viral, bacterial and parasitic diseases is presented. The impact of infectious agents on modern aquaculture is described and the main ideas about the possible long-term consequences of climate change for fish farms are given.

Practical Value. The review may be useful for specialists in veterinary medicine, epizootology and ichthyopathology.

Key words: climate change, infectious diseases of fish, pathogenesis.


  1. World Bank. Fish to 2030: Prospects for Fisheries and Aquaculture (English). Agriculture and Environmental Services Discussion Paper; No. 3 (World Bank Group, Washington DC, 2013).
  2. FAO. (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.
  3. Béné, C., Barange, M., Subasinghe, R. et al. (2015). Feeding 9 billion by 2050 – Putting fish back on the menu. Food Sec, 7, 261-274. https://doi.org/10.1007/s12571-015-0427-z
  4. Béné, C. et al. (2016). Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev., 79, 177-196.
  5. Brugère C., De Young C. (2015). Assessing climate change vulnerability in fisheries and aquaculture: available methodologies and their relevance for the sector. FAO Fisheries and Aquaculture Technical Paper No. 597. Rome, Italy. 86 pp.
  6. Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F., eds. (2018). Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper. No. 627, Rome, FAO. 628 pp.
  7. Cheung, W., Sarmiento, J., Dunne, J. et al. (2013). Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Clim Change, V. 3, P. 254-258. https://doi.org/10.1038/nclimate1691
  8. Comte L., Olden J.D. (2017) Climatic vulnerability of the world’s freshwater and marine fishes. Nature Climate Change, 7(10). DOI: 10.1038/nclimate3382
  9. Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. (2015). Resilience and reactivity of global food security. PNAS, 112, 6902-6907 https://doi.org/10.1073/pnas.1507366112 
  10. Fraile, I., Arrizabalaga, H., Groeneveld, J., Kölling, M., Santos, M. N., Macías, D., Rooker, J. R. (2016). The imprint of anthropogenic CO 2 emissions on Atlantic bluefin tuna otoliths. Journal of Marine Systems, 158, 26–33. doi:10.1016/j.jmarsys.2015.12.012
  11. Breitburg D., Levin L., Oschlies A., et al. (2018). Declining oxygen in the global ocean and coastal waters. Science, Vol. 359, Is. 6371, eaam7240 DOI: 10.1126/science.aam7240.
  12. Limburg K., Olson C., Walther Y., et al. (2011). Tracking Baltic hypoxia and cod migration over millennia with natural tags. PNAS, Vol. 108 (22), P.177-182. https://doi.org/10.1073/pnas.1100684108
  13. Falconer, L., Hjøllo, S. S., Telfer, T. C., McAdam, B. J., Hermansen, Ø., & Ytteborg, E. (2019). The importance of calibrating climate change projections to local conditions at aquaculture sites. Aquaculture, 734487. doi:10.1016/j.aquaculture.2019.734487 
  14. Cochrane, K., De Young, C., Soto, D. and Bahri, T. (2009). Climate change implications for fisheries and aquaculture. FAO Fisheries and aquaculture technical paper: 530: 212.
  15. Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish. Fish, 11, 149–158. https://doi.org/10.1111/j.1467-2979.2009.00350.x 
  16. Winfield, I. J., Baigún, C., Balykin, P. A., Becker, B., Chen, Y., Filipe, A. F. and Kutsyn, D. N. (2016). International perspectives on the effects of climate change on inland fisheries. Fisheries, 41(7), 399-405. DOI:10.1080/03632415.2016.1182513
  17. Adhikari, S., Keshav, C. A., Barlaya, G., Rathod, R., Mandal, R. N., Ikmail, S. and Sarkar, S. (2018). Adaptation and Mitigation Strategies of Climate Change Impact in Freshwater Aquaculture in some states of India. Journal of Fisheries Sciences, 12(1): 16-21. https://doi.org/10.21767/1307-234X.1000142 
  18. Chiaramonte L., Munson D., Trushenski J. (2016). Climate Change and Considerations for Fish Health and Fish Health Professionals. Fisheries, 41:7, 396-399. DOI: 10.1080/03632415.2016.1182508
  19. Zinsstag J., Crump L., Schelling E., et al. (2018). Climate change and One Health. FEMS Microbiology Letters, 365 (11), fny085. https://doi.org/10.1093/femsle/fny085
  20. Bowden, T. J., K. D. Thompson, A. L. Morgan, R. M. L. Gratacap, and S. Nikoskelainen, (2007). Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol, 22, 695–706. https://doi.org/10.1016/j.fsi.2006.08.016 
  21. FAO. The Future of Food and Agriculture – Trends and Challenges. (Rome, 2017).
  22. Ern, R., Huong, D., Cong, N., Bayley, M. & Wang, T. (2014). Effect of salinity on oxygen consumption in fishes: a review. J. Fish. Biol., 84, 1210–1220. https://doi.org/10.1111/jfb.12330 
  23. Walker P. J & Mohan C.V. (2009). Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management. Reviews in Aquaculture, 1, 125-154. https://doi.org/10.1111/j.1753-5131.2009.01007.x 
  24. Gale, P., T. Drew, L. P. Phipps, G. David, and M. Wooldridge. (2009). The effect of climate change on the occurrence and prevalence of livestock disease in Great Britain: a review. J. Appl. Microbiol., 106, 1409–1423. https://doi.org/10.1111/j.1365-2672.2008.04036.x 
  25. Marcos-Lopez M., Gale P., Oidtmann B.C., Peeler E.J. (2010). Assessing the Impact of Climate Change on Disease Emergence in Freshwater Fish in the United Kingdom. Transboundary and Emerging Diseases, 57, 293–304. doi:10.1111/j.1865-1682.2010.01150.x
  26. Rud Yu.P., Maistrenko M.I., Buchatsky L.P. (2018). Polymerase chain reaction for identification of Cyprinid Herpesviruses in Ukraine. Biotechnologia acta, Vol. 11, №1, P. 58-63. https://doi.org/10.15407/biotech11.01.058 
  27. Rud Yu. (2019). Isolation of Infectious hematopoietic necrosis virus (IHNV) and Viral hemorrhagic septicemia virus (VHSV) in Ukraine. Current Advances in Pathogen Research, March 25 – 31, 2019, Yerevan, Armenia. Abstract Book. – P. 37-38.
  28. Rud Yu., Buchatsky L.P. (2019). First detection of Infectious hematopoietic necrosis virus (IHNV) in Ukraine. Bioresources and Viruses, Sep 9-11, 2019, Kyiv, Ukraine. Abstract book.
  29. Rud Yu.P., Matvienko N.M., Buchatski L.P. (2019). Characterisation of a newly isolated SVCV strain in Ukraine. Biologija, 65. No. 3, 165–173. https://doi.org/10.6001/biologija.v65i3.4085 
  30. Rud Yu., Maistrenko M., Buchatsky L. (2015). Characterization of an infectious pancreatic necrosis virus from rainbow trout fry (Onhorhynchus mykiss) in West Ukraine. Virologica Sinica, 30 (3), 231-233. https://doi.org/10.1007/s12250-014-3513-z 
  31. Buchatskyi L.P., Rud Yu.P., Matvyenko N.N. (2020). Vyrusnыe ynfektsyy osetrov y lososei. K.: DYA. 240 s. - ISBN 978-617-7785-10-0
  32. Lewisch E., Gorgoglione B., Way K., El-Matbouli M. (2015). Carp Edema Virus/Koi Sleepy Disease: An Emerging Disease in Central-East Europe. Transboundary and Emerging Diseases, 62, 6-12. https://doi.org/10.1111/tbed.12293 
  33. Rud Yu., Bigarre L., Buchatsky L.P. (2019). First detection of a sturgeon mimivirus in Ukraine. 19th International Conference on Diseases of Fish and Shellfish, Porto, Portugal, September 09-13, 2019. Abstract book.
  34. Rud Yu.P., Zaloilo O.V., Buchatskyi L.P. (2017). Ekspres-diahnostyka chotyrokh patohennykh bakterii u raiduzhnoi foreli Oncorhynchus mykiss . Veterynarna medytsyna, 103, 146-148.
  35. Rud Yu.P. (2013). Ekspres-diahnostyka flavobakteriozu ryb metodom polimeraznoi lantsiuhovoi reaktsii. Silskohospodarska mikrobiolohiia, 18, 132-145. https://doi.org/10.1111/jns5.12031 
  36. Rud Yu.P., Tsyhanok I.O. (2014). Molekuliarna diahnostyka Yersinia ruckeri. Rybohospodarska nauka Ukrainy, №2, 69-78. https://doi.org/10.15407/fsu2014.02.069 
  37. Mishra A., Nam G.-H., Gim J.-A.1, Lee H.-L., Jo A., Kim H.-S. (2018). Current Challenges of Streptococcus Infection and Effective Molecular, Cellular, and Environmental Control Methods in Aquaculture. Mol. Cells, 41(6):495-505.
  38. Matvienko N., Levchenko A., Danchuk O., Kvach Y. (2020). Assessment of the occurrence of microorganisms and other fish parasites in the freshwater aquaculture of Ukraine in relation to the ambient temperature. Acta Ichthyol. Piscat., 50 (3): 333–348. https://doi.org/10.3750/AIEP/02979 
  39. Karvonen A., Rintamäki P., Jokela J., Tellervo Valtonen E. (2010). Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. International Journal for Parasitology, 40, 1483–1488 https://doi.org/10.1016/j.ijpara.2010.04.015
  40. Rud Yu.P., Drahan L.P., Tsapenko P.K., Buchatskyi L.P., Hrytsyniak I. (2017). Molekuliarna diahnosyka patohennykh ta umovno-patohennykh bakterii v populiatsiiakh tsinnykh vydiv ryb Ukrainy. Visnyk ahrarnoi nauky, №10. S. 28-32.
  41. Bear, E. A., T. E. McMahon, and A. V. Zale. (2007). Comparative thermal requirements of westslope cutthroat trout and rainbow trout: implications for species interactions and development of thermal protection standards. Trans. Am. Fish. Soc., 136, 1113-1121. https://doi.org/10.1577/T06-072.1 
  42. Alborali, L. (2006). Climatic variations related to fish diseases and production. Vet. Res. Commun., 30, 93-97. https://doi.org/10.1007/s11259-006-0019-7 
  43. Dittmar, J., Janssen, H., Kuske, A., Kurtz, J. & Scharsack, J. P. (2014). Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). J. Anim. Ecol., 83, 744-757. https://doi.org/10.1111/1365-2656.12175 
  44. Rud Yu., Buchatsky L.P. (2019). Use of Antimicrobial Agents in Aquaculture and Rising of Antimicrobial Resistance in Ukraine. Fourth Annual BTRP Ukraine Regional One Health Research Symposium, Kyiv, Ukraine, 20-24 May, 2019. Abstract Book.
  45. Van Boeckel, T. P. et al. (2019). Global trends in antimicrobial resistance in animals in low- and middle- income countries. Science, 365, 1266. https://doi.org/10.1126/science.aaw1944 
  46. Reverter, M., Sarter, S., Caruso, D. et al. (2020). Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun, 11, 1870 https://doi.org/10.1038/s41467-020-15735-6
  47. Jones, D. T., C. M. Moffitt, and K. K. Peters. (2007). Temperature-mediated differences in bacterial kidney disease expression and survival in Renibacterium salmoninarum-challenged bull trout and other salmonids. N. Am. J. Fish. Manage, 27, 695-706. https://doi.org/10.1577/M06-002.1 
  48. Mallick A., Panigrahi A.K. (2018). Effect of temperature variation on disease proliferation of common fishes in perspective of climate change. International Journal of Experimental Research and Review, Vol. 16: 40-49.
  49. Mastan, S. A. and Ahmed, O. (2013). Bacterial kidney disease (BKD) in Indian Major Carp fishes, Labeo rohita (Ham.) and Cirrhinus mrigala (Ham.)-Natural occurrence and artificial challenge. Asian Journal of Pharmaceutical and Clinical Research, 6: 3.
  50. Kumar, V., Roy, S., Barman, D. and Kumar, A. (2014). Immunoserological and molecular techniques used in fish disease diagnosis: A mini review. International Journal of Fisheries and Aquatic Studies, 1(3): 111-117.
  51. Haenen O.L.M., Wa, K., Bergmann S.M., Ariel E. (2004).The emergence of koi herpesvirus and its significance to European aquaculture. Bulletin of the European Association of Fish Pathologists, 24 6. - ISSN 0108-0288 - p. 293 - 307.
  52. Zrnčić S, Oraić D, Zupičić IG, et al. (2020). Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. J Fish Dis.;00:1–13. https://doi. org/10.1111/jfd.13163
  53. Matras M., Stachnik M., Borzym E., Maj‐Paluch J., Reichert M. (2019). Potential vector species of carp edema virus (CEV). J Fish Dis., 42(7): 959–964. doi: 10.1111/jfd.13000
  54. OIE. World Organisation for Animal Health. Manual of Diagnostic Tests for Aquatic Animals. (2019). Available online at: https://www.oie.int/standard-setting/aquatic-manual/access-online/
  55. Nylund, A., M. Devold, H. Plarre, E. Idsal, and M. Aarseth. (2003). Emergence and maintenance of infectious salmon anaemia virus (ISAV) in Europe: a new hypothesis. Dis. Aquat. Organ., 56, 11-24. https://doi.org/10.3354/dao056011 
  56. Parry, L., and P. F. Dixon. (1997). Stability of nine viral haemorrhagic septicaemia virus (VHSV) isolates in seawater. Bull. Eur. Assoc. Fish Pathol., 17, 31-36.
  57. Graham, D. A., C. Staples, C. J. Wilson, H. Jewhurst, K. Cherry, A. Gordon, and H. M. Rowley. (2007). Biophysical properties of salmonid alphaviruses: influence of temperature and pH on virus survival. J. Fish Dis., 30, 533-543. https://doi.org/10.1111/j.1365-2761.2007.00811.x 
  58. Hakalahti, T., A. Karvonen, and E. T. Valtonen. (2006). Climate warming and disease risks in temperate regions – Argulus coregoni and Diplostomum spathaceum as case studies. J. Helminthol., 80, 93-98. https://doi.org/10.1079/JOH2006351 
  59. Marcogliese D. J. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Can. J. Zool., 79 (8), 1331-1352. https://doi.org/10.1139/z01-067  
  60. Gorgoglione, B., Wang, T., Secombes, C.J. et al. (2013). Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities. Vet Res., 44, 55 https://doi.org/10.1186/1297-9716-44-55.
  61. Jørgensen, L. V. G. (2017). The fish parasite Ichthyophthirius multifiliis: Host immunology, vaccines and novel treatments. Fish and Shellfish Immunology, 67, 586-595. https://doi.org/10.1016/j.fsi.2017.06.044
  62. Hiner M. & Moffitt C.M. (2001). Variation in infections of Myxobolus cerebralis in field-exposed cutthroat and rainbow trout in Idaho. J. aquat. Anim. Hlth., 13, 124-132. https://doi.org/10.1577/1548-8667(2001)013<0124:VIIOMC>2.0.CO;2 
  63. Tops, S., W. Lockwood, and B. Okamura. (2006). Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Dis. Aquat. Organ., 70, 227-236. https://doi.org/10.3354/dao070227 
  64. Ashraf U., Lu Y., Lin L., Yuan L., Wang M., Liu X. (2016). Spring viraemia of carp virus: recent advances. Journal of General Virology, 97, 1037-1051. https://doi.org/10.1099/jgv.0.000436 
  65. Ahmed, N., Bunting, S. W., Rahman, S. & Garforth, C. J. (2014). Community-based climate change adaptation strategies for integrated prawn–fish–rice farming in Bangladesh to promote social-ecological resilience. Rev. Aquacult., 6, 20-35. 
  66. Leung, T. L. F. & Bates, A. E. (2013). More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J. Appl. Ecol., 50, 215-222.https://doi.org/10.1111/raq.12022 
  67. Doan Q.K., Vandeputte M., Chatain B., Morin T., Allal F. (2017). Viral encephalopathy and retinopathy in aquaculture: a review. Journal of Fish Diseases, Wiley, 40 (5), pp.717-742. ff10.1111/jfd.12541ff. ffhal-01533903f
  68. Peeler, E. J., A. Afonso, F. Berthe, E. Brun, C. J. Rodgers, A. Roque, R. Whittington, and M. A. Thrush. (2009). Epizootic haematopoietic necrosis virus – An assessment of the likelihood of introduction and establishment in England and Wales. Prev. Vet. Med., 9, 241-253. https://doi.org/10.1016/j.prevetmed.2009.04.013 
  69. Vendrell, D., J. L. Balcazar, I. Ruiz-Zarzuela, I. de Blas, O. Girones, and J. L. Muzquiz, (2006). Lactococcus garvieae in fish: a review. Comp. Immunol. Microbiol. Infect. Dis., 29, 177-198. https://doi.org/10.1016/j.cimid.2006.06.003 
  70. Choongo K., Hang'ombe B., Samui K.L., Syachaba M., Phiri H., Maguswi C., Muyangaali K., Bwalya G., Mataa L. (2009). Environmental and climatic factors associated with epizootic ulcerative syndrome (EUS) in fish from the Zambezi floodplains, Zambia. Bulletin of Environmental Contamination and Toxicology, 83(4):474-478. DOI: 10.1007/s00128-009-9799-0
  71. Perry, A. L., P. J. Low, J. R. Ellis, and J. D. Reynolds. (2005). Ecology: climate change and distribution shifts in marine fishes. Science, 308, 1912-1915. https://doi.org/10.1126/science.1111322 
  72. O’Gorman, E. J. et al. (2016). Temperature effects on fish production across a natural thermal gradient. Glob. Chang. Biol., 22, 3206-3322. https://doi.org/10.1111/gcb.13233 
  73. Marcogliese, D. J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. OIE Revue Scientifique et Technique, 27, 467-484. https://doi.org/10.20506/rst.27.2.1820 
  74. Jun, L. J., J. B. Jeong, J. H. Kim, J. H. Nam, K. W. Shin, J. K. Kim, J. C. Kang, and H. D. Jeong. (2009). Influence of temperature shifts on the onset and development of red sea bream iridoviral disease in rock bream Opleqnathus fasciatus. Dis. Aquat. Organ., 84, 201-208. https://doi.org/10.3354/dao02041 
  75. Brander, K. M. (2007). Global fish production and climate change. Proc. Natl. Acad. Sci. U S A, 104, 19709-19714. https://doi.org/10.1073/pnas.0702059104 
  76. Okamura, B., Hartikainen, H., Schmidt-Posthaus, H. and Wahli, T. (2011). Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshwater Biology, 56: 735-753. https://doi.org/10.1111/j.1365-2427.2010.02465.x 
  77. Gallana, M., Ryser-Degiorgis, M. P., Wahli, T. Segner, H. (2013). Climate change and infectious diseases of wildlife: altered interactions between pathogens, vectors and hosts. Current Zoology, 59: 427-437. https://doi.org/10.1093/czoolo/59.3.427 
  78. Paull, S. H. and Johnson, P. T. J. (2014). Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk. Ecology Letters, 17: 445-453. https://doi.org/10.1111/ele.12244 
  79. Harvell C.D., Mitchell C.E., Ward J.R., Altizer S., Dobson A.P., Ostfeld R.S. & Samuel M.D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296 (5576), 2158-2162. https://doi.org/10.1126/science.1063699 
  80. Daszak P., Cunningham A.A. & Hyatt A.D. (2000). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science, 287 (5452), 443-449. https://doi.org/10.1126/science.287.5452.443 
  81. Ficke A.D., Myrick C.A. & Hansen L.J. (2007). Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish., 17 (4), 581. https://doi.org/10.1007/s11160-007-9059-5 
  82. Roessig J.M., Woodley C.M., Cech J.J. Jr & Hansen L.J. (2004). Effects of global climate change on marine and estuarine fishes and fisheries. Rev. Fish Biol. Fish., 14, 251-275. https://doi.org/10.1007/s11160-004-6749-0 
  83. Schmidt K.A., Ostfeld R.S. (2001). Biodiversity and the dilution effect in disease ecology. Ecology, 82 (3), 609-619. https://doi.org/10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2 
  84. Dobson A. (2004). Population dynamics of pathogens with multiple host species. Am. Naturalist, 164, S64-S78. https://doi.org/10.1086/424681 
  85. Brandl, S.J., Johansen, J.L., Casey, J.M. et al. (2020). Extreme environmental conditions reduce coral reef fish biodiversity and productivity. Nat Commun., 11, 3832. https://doi.org/10.1038/s41467-020-17731-2
  86. Purcell J.E., Uye S., Lo W. (2007). Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series.; 350:153-74. https://doi.org/10.1086/424681 
  87. Smage S.B., Brevik O.J., Frisch K., Watanabe K., Duesund H., Nylund A. (2017) Concurrent jellyfish blooms and tenacibaculosis outbreaks in Northern Norwegian Atlantic salmon (Salmo salar) farms. PLoS ONE, 12(11):e0187476. https://doi.org/10.1371/journal.pone.0187476
  88. Rodger H.D., Henry L., Mitchell S.O. (2011). Non-infectious gill disorders of marine salmonid fish. Reviews in Fish Biology and Fisheries.; 21(3):423-40. https://doi.org/10.1007/s11160-010-9182-6