Ribogospod. nauka Ukr., 2019; 3(49): 32-47
DOI: https://doi.org/10.15407/fsu2019.03.032
УДК 004:591.5:612:616-006

Fish information databases construction: data preparation and object-oriented system analysis

O. Klyuchko, This email address is being protected from spambots. You need JavaScript enabled to view it. , Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine, Kyiv
L. Buchatsky, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS of Ukraine, Kyiv
O. Melezhyk, This email address is being protected from spambots. You need JavaScript enabled to view it. , Open International University of Human Development "Ukraine", Kyiv

Purpose. The purpose of the work was to demonstrate the applications of methods of database construction on the example of information about rainbow trout and viral infections affecting it. In process of such databases construction for electronic information systems it is necessary to find the ways of biological data preparation for each of solved tasks, than to make an adequate processing of these input data. Further step is the use of the methods of object-oriented system analysis for the aforementioned database construction in optimal way.

Methodology. The methods of object-oriented system analysis, ER-diagram design, and the methods of computer databases construction were used in process of present work fulfillment.

Findings. At the initial stage of the work some fish databases known in the world were observed. The peculiarities of biological objects (fishes) that have to be taken into account for this task fulfillment were analyzed. Further the approach of object-oriented analysis for constructing of computer databases in optimal manner was suggested. The first logical steps of algorithm for construction of databases with relative information about fish were described as well the practical recommendations for the development of databases with information concerning domestic biological organisms (on example of rainbow trout, its viral infection) for electronic information systems were done.

Originality. No large-scale implementation of contemporary information-computer technologies in Ukraine was done yet. The obtained results would be contributed to further intensive implementation of contemporary information technologies for the development of domestic fishery industry.

Practical value. Rainbow trout is important specie for fishery economy; its studying as well as viral infections affecting it are of great value for food safety. Information computer technologies application suggested in the work would make this branch of economy more effective in Ukraine and in the whole world.

Keywords: fish, fishery economy, trout, databases, electronic information systems object-oriented system analysis.


  1. Klyuchko, O. М., Buchatsky, L. P., & Melezhyk, O. V. (2019). Biological databases construction using object-oriented system analysis. Biotechnol. acta, 12 (3), 5-22. https://doi.org/10.15407/biotech12.03.005 
  2. Klyuchko, O. М., & Klyuchko, Z. F. (2018). Electronic databases for Arthropods: methods and applications. Biotechnol. acta, 11 (4), 28-49. https://doi.org/10.15407/biotech11.04.028. 
  3. Klyuchko, O. М., & Klyuchko, Z. F. (2018). Electronic information systems for monitoring of populations and migrations of insects. Biotechnol. acta, 11 (5), 5-25. https://doi.org/10.15407/biotech11.05.005.
  4. Duan, Y., Fu, Z., & Li, D. (2003). Toward Developing and Using Web-based Tele-Diagnosis in Aquaculture. Expert System with Applications, 25 (2), 247-254. https://doi.org/10.1016/S0957-4174(03)00050-2 
  5. Smirnov, I. S., Voronina, E. P., Lobanov, A. L., Golikov, A. A., & Neyelov, A. V. (2004). Creation of Information retrieval systems on collections of marine animals (fishes and invertebrates) in the Zoological Institute of RAS. Proceedings of the Sixth National Russian Research Conference RCDL’2004, Pushchino, September 29 - October 1, 2004. Moscow, 30-33.
  6. Chen, Y., Shi, M., Cheng, Y., Zhang, W., Tang, Q., & Xia, Q. (2018). FVD: The fish-associated virus database. Infect Genet., 58, 23-26. doi: 10.1016/j.meegid.2017.11.004.
  7. Crane, M., & Hyatt, A. (2011). Viruses of fish: an overview of significant pathogens. Viruses, 3 (11), 2025-2046. doi: 10.3390/v3112025.
  8. Zhang, Q., & Gui, J. F. (2015). Virus genomes and virus-host interactions in aquaculture animals. Sci. China Life Sci., 58 (2), 156-169. doi: 10.1007/s11427-015-4802-y.
  9. Valdez-Moreno, M., Ivanova, V., Elías-Gutiérrez, M., Pedersen, L., Bessonov, K., & Hebert, N. (2019). Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PloS One, 14 (4), e0215505. doi: 10.1371/journal.pone.0215505.
  10. Bi, H., Zhong, C., Shao, M., Wang, C., Yi, J., Qiao, L., & Zhang, J. (2019). Differentiation and Authentication of Fishes at Species Level Through Analysis of Fish Skin by MALDI TOF MS. Rapid Commun. Mass. Spectrom. doi: 10.1002/rcm.8474.
  11. User Reference for Fisheries Improvement ProjectsDatabase (FIP-DB) and Query Viewer. ru.scribd.com. Retrieved from https://ru.scribd.com/document/385739269/Readme-File-for-FIP-DB#download.
  12. Froese, R., & Pauli, D. (2000). FishBase 2000: Concepts, designs and data sources. Los Banos, Philippines: ICLARM.
  13. Moreau, J., & Costa-Pierce, B. (1997). Introduction and present status of exotic carp in Africa. Aquacult. Res., 28, 717-732. https://doi.org/10.1111/j.1365-2109.1997.tb01094.x 
  14. FAO. (2016). The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 p. fao.org. Retrieved from http://www.fao.org/3/a-i5555e.pdf.
  15. Roessig, J. M., Woodley, Ch. M., Cech, J. J., & Hansen L. J. (2004). Effects of Global Climate Change on Marine and Estuarine Fishes and Fisheries. Springer. https://doi.org/10.1007/s11160-004-6749-0 
  16. A Global Information System on Fishes. fishbase.se. Retrieved from https://www.fishbase.se/home.htm.
  17. Arnot, J. A., Mackay, D., Parkerton, T. F., & Bonnell, M. (2008). A database of fish biotransformation rates for organic chemicals. Environmental Toxicology and Chemistry, 27 (11), 2263-2270. Retrieved from https://setac.onlinelibrary.wiley.com/doi/full/10.1897/08-058.1. doi: 10.1897/08-058.1.
  18. Tedesco, P. A.,  Beauchard, О., Bigorne, R., Blanchet, S., Buisson, L., Conti, L.,  Cornu, J.-F., Dias, M. S., Grenouillet, G., Hugueny, B., Jézéquel, C., Leprieur, F., Brosse, S., & Oberdorff, T. (2017). A global database on freshwater fish species occurrence in drainage basins. Sci. Data, 4, 170141. doi: 10.1038/sdata.2017.141.
  19. Van der Laan, R., Eschmeyer, W. N., & Fricke, R. (2014). Family-group names of Recent fishes. Zootaxa Monograph., 3882 (1), 1-230. doi:10.11646/zootaxa.3882.1.1.
  20. Fricke, R., Eschmeyer, W. N., & van der Laan, R. Eschmeyer’s catalog of fishes: genera, species, 2019. researcharchive.calacademy.org. Retrieved from: http://researcharchive.calacademy.org/research/ichthyology/catalog.
  21. Zeldis, D. & Prescott, S. (2000). Fish disease diagnosis program—Problems and some solutions. Aquacultural Engineering, 23 (1-3), 3-11. https://doi.org/10.1016/S0144-8609(00)00047-9 
  22. Daoliang, Li, Zetian, Fu, & Yanqing, Duan. (2002). Fish-Expert: a web-based expert system for fish disease diagnosis. Expert Systems with Applications, 23, 311-320.
  23. Frimpong, E. A., & Paul, L. Welcome to the FishTraits Database. fishtraits.info. Retrieved from http://www.fishtraits.info.
  24. Di Génova, A. D., Aravena, A., Zapata, L., González, M., Maass, A., & Iturra, L. (2011). SalmonDB: a bioinformatics resource for Salmo salar and Oncorhynchus mykiss. Database (Oxford). 2011: bar050. doi: 10.1093/database/bar050. ncbi.nlm.nih.gov. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3225076.
  25. Klyuchko, O. M. (2008). Information and computer technologies in biology and medicine. Kyiv: Nat. Acad. Scienc. Ukraine-druk. (In Ukrainian).
  26. Maistrenko, M. I., Rud, Yu. P., & Buchatsky, L. P. (2014). Accumulation of IPNV on the culture of fish cells. Animal Biology, 16 (4), 93-99 (In Ukrainian).
  27. Matvienko, N. M., & Buchatsky, L. P. (2014). The use of immunomodulating preparations in fish farming. Modern problems of theoretical and practical ichthyology, 33-35 (In Ukrainian).
  28. Gavrilova, I. P., Maistrenko, M. I., Rumar, V. I., Buchatsky, L. P., & Rud, Yu. P. (2014). New hosts of the third-type of carp herpes virus (CyHV-3). Scientific notes of the Ternopil Ped. University. Series Biology, 58 (1), 16-20 (In Ukrainian).
  29. Maistrenko, M. I., & Buchatsky, L. P. (2014). Biology of Herpesvirus Fish. Problems of ecological and medical genetics and clinical immunology, 3 (123), 19-35 (In Ukrainian).
  30. Rud, Yu. P., Maistrenko, M. I., Bezusy, O. L. & Buchatsky, L. P. (2014). Experimental infection of long-winded cancer (Pontastacus leptodactylus) with virus of infectious pancreatic necrosis. Bulletin of Biology and Medicine, 4, 1 (113), 70-74 (In Ukrainian).
  31. Matvienko, N., Rud, Yu., & Buchatsky, L. (2014). Replication of Infectious Pancreatic Necrosis Virus in different cell lines and organism of rainbow trout (Oncorhynchus mykiss) fingerlings. Arch. Pol. Fish., 222, 127-133.
  32. Matvienko, N. M., & Buchatsky, L. P. Study of reproduction of hemorrhagic septicemia trout virus. Bulletin of Problems of Biology and Medicine, 2 (3), 118-121 (In Russian).
  33. Matvienko, N. M., Buchatsky, L. P., &  Deriabin, O. M. (2013). Application of a reverse transcriptase polymerase chain reaction for the detection and identification of the virus of infectious pancreatic necrosis of rainbow trout (Oncorhynchus mykiss). Microbiology and biotechnology, 4 (24), 46-54 (In Ukrainian). https://doi.org/10.18524/2307-4663.2013.4(24).48975 
  34. Matvienko, N., Kharkavlyuk, N., Buchatsky, L., & Didenko A. (2013). Characteristics of spring viraemia of carp virus strains isolated in different regions of Ukraine. Zoology and Ecology, 23 (3), 198-202. https://doi.org/10.1080/21658005.2013.831530 
  35. Matvienko, N., Rud, Y., & Buchatsky, L. (2013). Replication of infectious pancreatic necrosis virus in different cell lines and organism of rainbow trout (Оncorhynchus mykiss) fingerlings. Archives of Polish Fisheries, 4, 127-133. https://doi.org/10.2478/aopf-2014-0012 
  36. Rud, Yu. P., Maistrenko, M. I., & Buchatsky, L. P. (2013). Amplification and analysis of the nucleotide sequence of VP2 TA NS IPNV genes isolated in Western Ukraine. Problems of ecological and medical genetics and clinical immunology, 4 (118), 34-40 (In Ukrainian).
  37. Maistrenko, M. I., Buchatsky, L. P., & Matvienko, N. M. (2013). Strain of herpesvirus IMB В-4 for the obtaining a vaccine against herpes virus koi. Patent of Ukraine. (In Ukrainian).
  38. Rud, Yu., Maistrenko, M., & Buchatsky, L. (2013). Іsolation of IPNV from wild-life rainbow trout (Оncorhynchus mykiss) in Western Ukraine. Biology, 3 (65), 63-65.
  39. Maistrenko, M. I., Rud, Yu. P., Matvienko, N. M., Cholodna, L. S., & Buchatsky, L. P. (2013). Identification of virus SyNV-3 by the methods of electron microscopy and polymerase chain reaction. Reports of the National Academy of Sciences of Ukraine, 4, 139-143 (In Ukrainian).
  40. Matvienko, N. M., Vashchenko, А. V., Tsiganok, I. O., & Buchatsky, L. P. (2015). Results of surveillance studies of infectious fish diseases in freshwater aquaculture of Ukraine. Agricultural science and practice, 2 (2), 32-38. https://doi.org/10.15407/agrisp2.02.032 
  41. Rud, Y. P., & Buchatsky, L. P. (2015). Detection of infectious pancreatic necrosis virus in the Western Ukraine. Virologica sinica, 30 (2), 1-4. https://doi.org/10.1007/s12250-014-3513-z 
  42. Movchan, Yu. V. (2009). Fishes of Ukraine (taxonomy, nomenclature, remarks). Collection of works of Zoological Museum, 40, 47-87.
  43. Klyuchko, O. M. (2018). Method for monitoring of chemicals influence on bioorganisms in few time intervals. Patent of Ukraine №134575 (In Ukrainian).
  44. Klyuchko, O. М. (2017). On the mathematical methods in biology and medicine. Biotechnol. acta, 10 (3), 31-40. https://doi.org/10.15407/biotech10.03.031.
  45. Klyuchko, O. М. (2017). Application of artificial neural networks method in biotechnology. Biotechnol. acta, 10 (4), 5-13. https://doi.org/10.15407/biotech10.04.005.
  46. Klyuchko, O. М. (2017). Cluster analysis in biotechnology. Biotechnol. acta, 10 (5), 5-18. https://doi.org/10.15407/biotech10.05.005.
  47. Klyuchko, O. М., & Onopchuk Yu. M. (2018). Some trends in mathematical modeling for biotechnology. Biotechnol. acta, 11 (1), 39-57. https://doi.org/10.15407/biotech11.01.039.
  48. Klyuchko, O. М. (2018). Electronic information systems in biotechnology. Biotechnol. acta, 11 (2), 5-22. https://doi.org/10.15407/biotech11.02.005.
  49. Klyuchko, O. М. (2018). Information computer technologies for biotechnology: electronic medical information systems. Biotechnol. acta, 11 (3), 5-26. https://doi.org/10.15407/biotech11.03.005.
  50. Klyuchko, O. М. (2018). Expert systems for biology and medicine. Biotechnol. аcta, 11 (6), 5-28. https://doi.org/10.15407/biotech11.06.005.
  51. Klyuchko, O. М. (2019). Biotechnical information systems for monitoring of chemicals in environment: biophysical approach. Biotechnol. acta, 12 (1), 5-28. https://doi.org/10.15407/biotech12.01.005 
  52. Klyuchko, O. М., Aralova, N. I., & Aralova, A. A. (2019). Electronic automated work places for biological investigations. Biotechnol. acta, 12 (2), 5-22.
  53. Sachnyuk, G. V., & Melezhyk, O. V. (2007). Current state of water resources protection against pollution. Youth: education, science, spirituality: theses of reports XV Ukr. Sci. conf. Kyiv, April 17-19, 409-410.
  54. Schnase, J. L., Cushing, J., & Frame, M. (2003). Information technology challenges of biodiversity and ecosystems informatics. Inform. syst., 28 (4), 339-345. https://doi.org/10.1016/S0306-4379(02)00070-4 
  55. Linne, C. (1761). Fauna Suecica. Stocholmiac.
  56. Microsoft Academy: Methods and means of software engineering. intuit.ru. Retrieved from https://www.intuit.ru/studies/courses/2190/237/lecture/6124.
  57. Chomonenko, A. D., Tzygankov, V. M., & Maltzev, M. G. (2006). Databases. (5-th edn.). Moscow: Binom Press. (In Russian). 
  58. Harrington, Jan L. (2005). Object-oriented database design clearly explained. USA: Academic Press.
  59. Buchatsky, L. P. (2012). Alfaviral diseases of salmon fishes. Fisheries science of Ukraine, 1, 105-110 (In Ukrainian).