pdf35Ribogospod. nauka Ukr., 2017; 2(40): 60-67
DOI: https://doi.org/10.15407/fsu2017.02.060 
УДК 597-115.08:639.371.2

Development of DNA identification for sturgeon species with the use of real time polymerase chain reaction

V. Spyrydonov, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of veterinary medicine, NAAS, Kyiv

Purpose. Sturgeon is the common name for the 27 species of fish belonging to the family Acipenseridae. The family is grouped into four genera: Acipenser, Huso, Scaphirhynchus and Pseudoscaphirhynchus. Four species may now be extinct. Two closely related species, Polyodon spathula (paddlefish) and Psephurus gladius (Chinese paddlefish, possibly extinct) are of the same order, Acipenseriformes, but belong to the family Polyodontidae and are not considered as "true" sturgeons. The aim of our paper is to develop and carry out a new DNA identification methodology for the sturgeons species with the use of real time polymerase chain reaction.

Methodology. A PCR with the detection of results in real time was used for DNA-identification of sturgeon species.

Findings. The new real-time PCR was developed and tested for rapid and accurate identification of DNA extracted from eggs and meat of four sturgeon species such as beluga (Huso huso, Linnaeus), Russian sturgeon (Acipenser gueldenstaedtii, Brandt), sterlet (Acipenser ruthenus, Linnaeus) and stellate sturgeon (Acipenser stellatus, Pallas). Based on the results of analytical specificity and comparison of the amplification parameters, we detected specific amplification and absence of cross reactions for fin fragments and eggs of the studied fish species. The proposed DNA-identification method can be used for the identification of sturgeon species that will allow controlling the production of competitive aquaculture products, which will meet CITES requirements.

Originality. For the first time, the development and approbation of the methodology for species identification of sturgeon fish by using real-time PCR was carried out.

Practical value. Species identification of sturgeon fish will allow controlling the production of competitive and legalized aquaculture products that meet CITES requirements as well as will ensure the implementation of the country strategic plan for food security in Ukraine.

Keywords: DNA-identification, real time polymerase chain reaction, mitochondrial DNA markers, sturgeon species.

REFERENCES

  1. Voynova, N. V. (2004). Geneticheskaya pasportizatsiya osetrovykh: prakticheskie i teoreticheskie aspekty. Moskva: VNIRO.
  2. Myuge, N. S. (2008). Polimorfizm kontrol'nogo regiona mitokhondrial'noy DNK vos'mi vidov osetrovykh i razrabotka sistemy DNK-identifikatsii vidov. Genetika, 7, 913-919.
  3. Congiu, L., Dupanloup, I., & Patarnello, T. et al. (2001). Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Mol. Ecol., 10, 2355-2359. https://doi.org/10.1046/j.0962-1083.2001.01368.x 
  4. Kozlova, N. V., Bazelyuk, N. N., Fayzulina, D. R., & Stonogina, E. V. (2013). Primenenie molekulyarno-geneticheskikh issledovaniy v akvakul'ture osetrovykh ryb. Vestnik AGTU, 3, 113-117.
  5. Barmintseva, A. E. (2013). Ispol'zovanie mikrosatellitnykh lokusov dlya ustanovleniya vidovoy prinadlezhnosti osetrovykh (Acipenseridae) i vyyavleniya osobey gibridnogo proiskhozhdeniya. Genetika zhivotnykh, 49, 9, 1093-1105.
  6. Doukakis, P., Birstein, V. J., & Ruban, J. J. et al. (1999). Molecular genetic analysis among subspecies of two Eurasian sturgeon species, Acipenser baerii and A. stellatus. Mol Ecol., 12, 117-127. https://doi.org/10.1046/j.1365-294X.1999.00816.x 
  7. Raymakers, C. (2006). CITES, the Convention on International Trade in Endangered Species of wild fauna and flora: its role in the conservation of Acipenseriformes. J. Appl. Ichthyol., 22 (Suppl. 1), 53-65. https://doi.org/10.1111/j.1439-0426.2007.00929.x 
  8. Malysheva, O. O., Spyrydonov, V. H., & Melnychuk, S. D. (2015). Vprovadzhennia henetychnoi pasportyzatsii osetrovykh v Ukraini. Tvarynnytstvo Ukrainy, 9, 12-15.
  9. Voinova, N. V., Timoshkina, N. N., Chistyakov, V. A., Barmintsev, V. A., Abramova, A. B., & Chudinov, O. S. (2002). Geneticheskaya pasportizatsiya proizvoditeley osetrovykh ryb. Novye tekhnologii v zashchite bioraznoobraziya v vodnykh ekosistemakh: Mezhdunarodnaya konf. Moskva. 91.
  10. Glik, B., & Pasternak, Dzh. (2002). Molekulyarnaya biotekhnologiya. Printsipy i primenenie. Moskva: Mir.
  11. Higuchi, R., Fockler,C., Dollinger, G., & Watson, R. (1993). Kinetic PCR: Real time monitoring of DNA amplification reactions. Biotechnology, 11, 1026-1030. https://doi.org/10.1038/nbt0993-1026 
  12. White, T. J., Madej, R., Persing, D. H., & Erlich, H. A. (1992). The polymerase chain reaction: clinical applications. Adv. Clin. Chem., 29, 161-196. https://doi.org/10.1016/S0065-2423(08)60224-3 
  13. Jin, Li G., & Makrigiorgos, G. M. (2007). Anti-primer quenching-based real-time PCR for simplex or multiplex DNA quantification and single-nucleotide polymorphism genotyping. Nature Protocols, 2, 1, 50-58. https://doi.org/10.1038/nprot.2007.11
  14. Zinov'eva, N. A., Popov, A. P., & Ernst, L. K. et al. (1998). Metodicheskie rekomendatsii po ispol'zovaniyu metoda polimeraznoy tsepnoy reaktsii v zhivotnovodstve. Dubrovitsy: VIZh.
  15. Boom, R., Sol, C. J. A., & Salimans, M. M. et al. (1990). Rapid and Simple Method for Purification of Nucleic Acids. Journal of Сlinical Microbiology, 28, 495-503.
  16. Carter, M. J., & Milton, I. D. (1993). An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Res., 21, 1044-1046. https://doi.org/10.1093/nar/21.4.1044 
  17. Rebrikov, D. V., Samaton, G. A., & Trofimov, D. Yu. (2009). PTsR v real'nom vremeni. (2-nd ed.). Moskva: Binom. Laboratoriya znaniy.