Ribogospod. nauka Ukr., 2016; 3(37): 32-46
DOI: https://doi.org/10.15407/fsu2016.03.032
УДК 556.114:[628.394.17:546.77]

pdf35BIOLOGICAL ROLE AND TOXIC INFLUENCE OF MOLYBDENUM IN AQUATIC ECOSYSTEMS (A REVIEW)

І. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
D. Yanovych, This email address is being protected from spambots. You need JavaScript enabled to view it. , Lviv National University of Veterinary Medicine and Biotechnologies named after S. Gzhytskyj, Lviv
T. Shvets, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv

Purpose. The consequence of human impact of the ecosystems of water bodies are as a rule the input of xenobiotics of various natures or the excess of the natural level of biogenic trace elements that ultimately leads to negative changes in the structure of aquatic biota communities, disturbances of vital activity processes of some flora and fauna species. The consequences of these processes are presented as a reduction in the productivity of water bodies, impoverishment of their species variety, and subsequently as an unsuitability of water bodies for fisheries related activities. Study, analysis and generalization of information concerning the pathways of toxicants input into water bodies, their behavior in hydroecosystems, possible effects on aquatic organisms of different trophic levels have an important theoretical and practical value. Behavioral, physiological, biochemical, cytological, histological and genetic reactions can serve as a basis for the adoption of necessary measures aimed at improving the ecological state of water bodies or preventing and avoiding potential hazards to aquatic populations. The aim of this work is an analysis and synthesis of the available literature data about the role of a relatively poorly studied trace element molybdenum in hydroecosystems, its biological importance and toxic effect for aquatic organisms.

Findings. The data containing in the article were obtained based on reviewing existing publications of domestic and foreign authors. In particular, they describe hydrochemical properties of molybdenum and its compounds, possible sources of input into water bodies, pathways of element migration. A brief description of the identification and control methods for the element content in aquatic environment is presented. Biophilic properties of molybdenum for aquatic flora and fauna as well as the impact on their productive parameters are described. The data regarding the bioaccumulation potential of molybdenum, as well as its distribution in tissues and organs of aquatic organisms are given. The adaptive reactions of aquatic plants, invertebrates and fish in the conditions of elevated molybdenum concentrations in water, the possible adverse effects of such impacts on biota at different levels, in particular on cellular, tissue, whole organism ones are described. The perspectives and theoretic measures of further studies on molybdenum presence and its effect in ecotoxicological aspect are highlighted.

Originality. The article contains a summary of research results carried out since the middle of the last century to the present time, on the role and functions of molybdenum in aquatic ecosystems and organisms of certain species of aquatic biota, information on its eco-toxicity in terms of its excessive input into water bodies..

Practical value. The data presented in the article can be the basis for the adoption of measures for the prevention and avoidance of potential hazards to aquatic populations associated with the input of significant amounts of molybdenum into water bodies in the composition of agricultural runoff and industrial effluents.

Keywords: molybdenum, aquatic organisms, algae, invertebrates, fish, essentiality, toxicity.

REFERENCES

  1. Hrytsyniak, I. I., Yanovych, D. O., & Shvets T. M. (2015). Ekotoksykolohiia lososevykh ryb. Kyiv : DIA.
  2. Yanovych, N. Ye., & Yanovych, D. O. (2014). Rol mikroelementiv u zhyttiediialnosti stavkovykh ryb. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S. Z. Gzhytskoho, 16, 2(59), 2, 345-372.
  3. Aveston, J., Anacker, E. W., & Johnson, J. S. (1964). Hydrolysis of molybdenum (VI): ultracentrifugation, acidity measurements, and Raman spectra of polymolybdates. Inorg. Chem., 3, 735-746. http://dx.doi.org/10.1021/ic50015a030
  4. Guseva, T. V. (Ed.). (2007). Gidrokhimicheskie pokazateli sostoyaniya okruzhayushchey sredy: spravochnye materialy. Moskva : FORUM ; INFRA-M.
  5. Ihnatenko, I. I. (2011). Sezonna dynamika vmistu ta form znakhodzhennia molibdenu u vodi skydnoho kanalu TETs 5. Naukovi pratsi UkrNDHMI, 260, 146-157.
  6. Ihnatenko, I. I. (2008). Sezonna dynamika spivisnuiuchykh form molibdenu u vodi Kanivskoho vodoskhovyshcha ta deiakykh ozer m. Kyieva. Nauk. zapysky Ternopilskoho nats. ped. un-tu im. V. Hnatiuka, 3(37), 68-73.
  7. Kalabina, L. V., Linnik, P. N., & Nabivanets, B. I. (1989). Sostoyanie rastvorennykh form molibdena (VI) v vode r. Dnepra. Gidrobiologicheskiy zhurnal, 25, 1, 83-88.
  8. Ushakova, V. F. (1970). Migratsiya molibdena v pochve i vode udobryaemykh vyrostnykh prudov. Sbornik nauchno-issledovatel’skikh rabot VNIIPRKh, 3, 42-53.
  9. Nikanorov, A. M., & Zhulidov, A. V. (1991). Biomonitoring metallov v presnovodnykh ekosistemakh. Leningrad : Gidrometeoizdat.
  10. Khoroshevskaya, V. O. (2012). Analiz soderzhaniya molibdena v poverkhnostnykh vodakh razlichnykh landshaftno-klimaticheskikh zon. Nauka i sovremennost’, 16(1), 19-23.
  11. Reid, S. D. (2012). Molybdenum and Chromium. Homeostasis and toxicology of essential metals. London ; Waltham ; San Diego : Academic Press, 375-415.
  12. Ihnatenko, I. I. (2013). Mihratsiia molibdenu u vodoimakh z upovilnenym vodoobminom. Hidrolohiia, hidrokhimiia i hidroekolohiia, 4(31), 67-73.
  13. Galicheva, E. E. (1970). Soderzhanie podvizhnykh form mikroelementov margantsa, medi, tsinka, molibdena v rybovodnykh prudakh Moskovskoy oblasti. Sbornik nauchno-issledovatel’skikh rabot VNIIPRKh, 3, 54-61.
  14. Normativy kachestva vody vodnykh ob"ektov rybokhozyaystvennogo znacheniya, v tom chisle normativy predel’no dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh ob"ektov rybokhozyaystvennogo znacheniya (2011). Moskva : VNIRO.
  15. Nabyvanets, B. Y., Osadchyi, V. I., Osadcha, N. M., & Nabyvanets. Yu. V. (2007). Analitychna khimiia poverkhnevykh vod. Kyiv : Naukova dumka.
  16. Kontrol’ kachestva vody : spravochnik. 1 : Metodiki analiticheskikh issledovaniy (2004). Moskva.
  17. Rukovodyashchiy dokument. Massovaya kontsentratsiya molibdena v vodakh. Metodika vypolneniya izmereniy inversionnym vol’tamperometricheskim metodom (2010). RD 52.24.416-2010. Moskva.
  18. Eisler, R. (1989). Molybdenum hazards to fish, wildlife, and invertebrates: a synoptic review. Laurel : U.S. Fish and Wildlife Service ; Patuxent Wildlife Research Center.
  19. Canadian Council of Ministers of the Environment (1999). Molybdenum : Canadian water quality guidelines for the protection of aquatic life. Winnipeg : Canadian Council of Ministers of the Environment.
  20. Kuznetsova, L. P. (1990). Biologicheskaya rol’ molibdena v zhiznedeyatel’nosti ryb. Extended abstract of candidate’s thesis. Moskva.
  21. Beers, M. H., & Berkow, R. (1998). The Merck Manual of Diagnosis and Therapy. Whitehouse Station, NJ : Merck & Co.
  22. Kisker, C., Schindelin, H., & Rees, D. C. (1997). Molybdenum-cofactor-containing enzymes: structures and mechanisms. Annu. Rev. Biochem., 66, 233-267. http://dx.doi.org/10.1146/annurev.biochem.66.1.233
  23. Stirpe, F., & Della Corte, E. (1969). The regulation of rat liver xanthine oxidase – conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J. Biol. Chem., 244, 3855-3863.
  24. Kurosaki, M., Li Calzi, M., & Scanziani, E. et al. (1995). Tissue- and cellspecific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide. Biochem. J., 306, 225-234. http://dx.doi.org/10.1042/bj3060225
  25. Galicheva, E. E., & Egorova, M. N. (1972). Vliyanie mikroelementov kobal’ta, tsinka, molibdena pri vvedenii ikh v korm na rybovodnye i fiziologicheskie pokazateli segoletkov karpa. Sbornik nauchnykh trudov VNIIPRKh, 1, 46-60.
  26. Kuznetsova, L. P., Azizova, N. A., & Yarzhombek, A. A. (1991). Vliyanie nizkikh kontsentratsiy molibdena na rezistentnost’ molodi ryb k fenolu. Sbornik nauchnykh trudov VNIIPRKh, 65, 139-142.
  27. Kuznetsova, L. P. (1992). Otsenka toksichnosti rastvorov paramolibdatov dlya guppi. Sbornik nauchnykh trudov VNIIPRKh, 66, 108-110.
  28. Kuznetsova, L. P., & Yarzhombek, A. A. (1990). Rost karpa na iskusstvennykh kormakh s razlichnym soderzhaniem molibdena. Sbornik nauchnykh trudov VNIIPRKh, 59, 101-102.
  29. Ushakova, V. F. (1971). Obespechennost’ molibdenom rybovodnykh prudov pri razlichnom udobrenii. Biologicheskie nauki, 6, 23-25.
  30. Ahsanullah, M. (1982). Acute toxicity of chromium, mercury, molybdenum and nickel to the amphipod Allorchestes compressa. Aust. J. Mar. Freshwater Res, 33, 465-474. http://dx.doi.org/10.1071/MF9820465
  31. Anderson, E. P., & Mackas, D. L. (1986). Lethal and sublethal effects of a molybdenum mine tailing on marine zooplankton: mortality, respiration, feeding and swimming behavior in Calanus marshallae, Metridia pacifica and Euphausia pacifica. Mar. Environ. Res., 19, 131-155. http://dx.doi.org/10.1016/0141-1136(86)90043-7
  32. Colmano, G. (1973). Molybdenum toxicity: abnormal cellular division of teratogenic appearance in Euglena gracilis. Bull. Environ. Contam. Toxicol., 9, 361-364. http://dx.doi.org/10.1007/BF01685087
  33. Sakaguchi, T., Nakajima, A., & Horikoshi, T. (1981). Studies on the accumulation of heavy metal elements in biological systems. Accumulation of molybdenum by green microalgae. European J. Appl. Microbiol. Biotechnol., 12, 84-89.http://dx.doi.org/10.1007/BF01970039 
  34. Reid, S. D. (2002). Physiological impact of acute molybdenum exposure in juvenile kokanee salmon (Oncorhynchus nerka). Comp. Biochem. Physiol., 133, 355-367. http://dx.doi.org/10.1016/s1532-0456(02)00121-7
  35. Short, Z. F., Olson, P. R., & Palumbo, R. F. et al. (1971). Uptake of molybdenum, marked with 99Mo, by the biota of Fern Lake, Washington, in a laboratory and a field experiment. Radionuclides in ecosystems: Third National Symposium on Radioecology: рroceedings. Vol. 1. Oak Ridge, TN, 474-485.
  36. Ward, J. V. (1973). Molybdenum concentrations in tissues of rainbow trout (Salmo gairdneri) and kokanee salmon (Oncorhynchus nerka) from waters differing widely in molybdenum content. J. Fish. Res. Bd Can., 30, 841-842. http://dx.doi.org/10.1139/f73-141
  37. Jezierska, B., & Witeska, M. (2001). Metal toxicity to fish. Siedlce : Wydawnictwo Academii Podlaskiej.
  38. Grishchenko, L. I., & Kuznetsova, L. P. (1988). Vliyanie molibdena na molod’ raduzhnoy foreli (patomorfologicheskie izmeneniya). Veterinariya, 9, 56-58.
  39. McConnell, R. P. (1977). Toxicity of molybdenum to rainbow trout under laboratory conditions. Molybdenum in the environment: the geochemistry, cycling, and industrial uses of molybdenum. New York : Marcel Dekker, 725-730.
  40. Bentley, R. E. (1973). Acute toxicity of sodium molybdate to bluegill (Lepomis macrochirus), rainbow trout (Salmo gairdneri), fathead minnow (Pimephales promelas), channel catfish (Ictalurus punctatus), water flea (Daphnia magna) and scud (Gammarus fasciatus). Wareham, MA : Bionomics.
  41. Hamilton, S. J., & Buhl, K. H. (1990). Acute toxicity of boron, molybdenum, and selenium to fry of chinook salmon and coho salmon. Arch. Environ. Contam. Toxicol., 19, 366-373. http://dx.doi.org/10.1007/BF01054980
  42. Hamilton, S. J., & Wiedmeyer, R. H. (1990). Concentrations of boron, molybdenum, and selenium in chinook salmon. Trans. Am. Fish. Soc., 119, 500-510. http://dx.doi.org/10.1577/1548-8659(1990)119<0500:cobmas>2.3.CO;2
  43. Pyle, G. G., Swanson, S. M., & Lehmkuhl, D. M. (2001). Toxicity of uranium mine-receiving waters to caged fathead minnows, Pimephales promelas. Ecotoxicol. Environ. Sa., 48, 202-214. http://dx.doi.org/10.1006/eesa.2000.2016
  44. Ricketts, C. D. (2009). The effect of acute waterborne exposure of sub-lethal concentrations of molybdenum on the stress response in rainbow trout (Oncorhynchus mykiss). Extended abstract of Master’s thesis. Okanagan : University of British Columbia. http://dx.doi.org/10.1371/journal.pone.0115334
  45. Ganina, V. S., Kaymina, N. V., & Movchan, G. V. et al. (1983). Biologicheskoe obosnovanie rybokhozyaystvennykh PDK dlya ionov vol’frama i molibdena. Respublikanskaya konferentsiya po problemam rybokhozyaystvennykh issledovaniy vnutrennikh vodoemov Karelii : tezisy dokl. Petrozavodsk, 81-82.
  46. Ricketts, C. D., Bates, W. R., & Reid, S. D. (2015). The effects of acute waterborne exposure to sublethal concentrations of molybdenum on the stress response in Rainbow Trout, Oncorhynchus mykiss. PLoS One, 10, 1, e0115334.
  47. Dillon, T. M., Suedel, B. C., & Peddicord, R. K. et al. (1995). Environmental effects of dredging: trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Vicksberg, MS : EEDP-01-33 US Army Engineer Waterways Experimental Station.
  48. Saiki, M. K., Jennings, M. R., & Brumbaugh, W. G. (1993). Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California. Arch. Environ. Contam. Toxicol., 24, 307-319. http://dx.doi.org/10.1007/BF01128729