Ribogospod. nauka Ukr., 2016; 2(36): 48-64
DOI: https://doi.org/10.15407/fsu2016.02.048
УДК 597-12:577.21.08



O. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
Yu. Rud, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv
I. Zaloilo, This email address is being protected from spambots. You need JavaScript enabled to view it. , National University of Life and Environmental Sciences of Ukraine, Kyiv
І. Hrytsyniak, This email address is being protected from spambots. You need JavaScript enabled to view it. , Institute of Fisheries NAAS, Kyiv

Purpose. The methods of molecular diagnostic (MMD) gradually become widespread in modern fish farming. MMD contain a wide variety of specific approaches, each of which has distinct limits of their possible applications and is characterized by individual peculiarities in practical performance. In addition to high sensitivity and the possibility of rapid diagnostics, the main advantage of molecular methods is to determine the uncultivated infectious agents. DNA amplification allows identifying pathogenic microorganisms at very small quantities even in the minimum sample volume. Molecular methods of diagnostic enable the determination of infection in latent or acute phases. These methods allow showing the differences between pathogens with similar antigenic structures. The current literature data on this subject usually show a methodology in the narrow context of the tasks or practical results obtained through such approaches. Thus, a synthesis of existing information on the mechanisms of action and the limits of the typical problems of basic methods of molecular diagnostics are an urgent task of fish breeding. In particular, the following description will more effectively choose one or several approaches to identify pathogens in fish.

Findings. This paper reviews the basic molecular methods that are used in the world's aquaculture for diagnosis of various diseases in commercial fish species.

Originality. This work is a generalization of data on the principles and mechanisms for the implementation of diagnostics based on modern molecular techniques. For each of the mentioned approaches, the most promising areas of application were shown. The information is provided in the form of a comparative analysis of each methodology, indicating positive and negative practical aspects.

Practical value. The current review of modern methods of molecular diagnostic in aquaculture is focused on practical application. Generalizing and analytical information can be used when planning the work flow and differential diagnostic measures (both operational as well and preventive), and will be useful when creating complex diagnostic approaches of general and individual character.

Keywords: methods of molecular diagnostics, PCR, DNA amplification, fish diseases.


  1. Walker, P., & Subasinghe, R. P. (2000). DNA-based Molecular Diagnostic Techniques. Research needs for standardization and validation of the detection of aquatic animal pathogens and diseases. FAO Fisheries Technical Paper, 395, 93.
  2. Amos, К. H. (1985). Procedures for the detection and identification of certain fish pathogens. 3-rd Ed. Corvallis, Oregon.
  3. Arakawa, C. K., Deering, R. J. J., & Higman, K. H. et al. (1990). Polymerase chain reaction (PCR) amplification of a nucleoprotein gene sequence of infectious hematopoietic necrosis virus. Dis. Aquat. Org., 8, 165-170. http://dx.doi.org/10.3354/dao008165
  4. Shchelkunov, I. S., & Oreshkova, S. F. (2006). Novye perspektivy v diagnostike virusnykh bolezney ryb: razrabotka test-sistem dlya vyyavleniya vozbuditelya vesenney viremii karpa na osnove metodov analiza genoma. Moskva.
  5. Zaloilo, І. А., Zaloilo, O. V., & Buchatskiy, L. P. (2015). Application of DNA microarrays in a modern fish-farming. Biotechnologia Acta, 8, 4, 9-20.
  6. Yue, M., Charles Richard, J. L., Yamada, N., Ogawa, A., & Ogawa, Y. Quick. (2014). Fluorescent In Situ Hybridization Protocol for Xist RNA Combined with Immunofluorescence of Histone Modification in X-chromosome Inactivation. J. Vis. Exp., 93, e52053, doi:10.3791/52053. http://dx.doi.org/10.3791/52053
  7. Soliman, H., Saleh, M., & El-Matbouli, M. (2015). Detection of fish pathogens by loop-mediated isothermal amplification (LAMP) technique. Methods Mol Biol. 2015;1247, 163-73. doi: 10.1007/978-1-4939-2004-4_12. http://dx.doi.org/10.1007/978-1-4939-2004-4_12
  8. Rebrikov, D. V., Samatov, G. A., Trofimov, D. Yu., Semjonov, P. A., Savilova, A. M., Kofiadi, I. A., & Abramov, D. D. (2009). PTsR v real'nom vremeni. Moskva : BINOM Laboratoriуa znanу.
  9. El-Jeni, R., El Bour, M., Calo-Mata, P., Böhme, K., Fernández-No, I. C., Barros-Velázquez, J., Bouhaouala-Zahar, B., & Can, J. (2016). In vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Microbiol., 62(1), 60-71. doi: 10.1139/cjm-2015-0481. Epub 2015 Oct 26.PMID: 26651241. http://dx.doi.org/10.1139/cjm-2015-0481
  10. Zorina, V. V. (2012). Osnovy polimeraznoy tsepnoy reaktsii (PTsR). Metodicheskoe posobie. Moskva : DNK-tekhnologiya.
  11. Cheng, N., Guo, M., Chang, P., Zhang, X., Zhang, R., Qi, C., Zhong, X., Zhou, Q., & Zhao, H. (2016). Expression of mep50 in adult and embryos of medaka fish (Oryzias latipes). Fish Physiol Biochem. http://dx.doi.org/10.1007/s10695-016-0196-4
  12. Zhimulev, I. F. (2002). Obshchaya i molekulyarnaya genetika. Novosibirsk: Izd-vo Novosib. un-ta.
  13. Cheng, C. M., Doran, T., Lin, W., Chen, K. S., Williams-Hill, D., & Pamboukian, R. (2015). Interlaboratory Validation for a Real-Time PCR Salmonella Detection Method Using the ABI 7500 FAST Real-Time PCR System. J Food Prot. 78(6), 1119-1124. doi: 10.4315/0362-028X.JFP-14-244. http://dx.doi.org/10.4315/0362-028X.JFP-14-244
  14. Vázquez, D., López-Vázquez, C., Skall, H. F., Mikkelsen, S. S., Olesen, N. J., & Dopazo, C. P. (2015). A novel multiplex RT-qPCR method based on dual-labelled probes suitable for typing all known genotypes of viral haemorrhagic septicaemia virus. J Fish Dis., May 7. doi: 10.1111/jfd.12381. http://dx.doi.org/10.1111/jfd.12381
  15. Tabarestani, S., Ghaderian, S. M., & Rezvani, H. (2015). Detection of Gene Amplification by Multiplex Ligation-Dependent Probe Amplification in Comparison with In Situ Hybridization and Immunohistochemistry. Asian Pac J Cancer Prev., 16(17), 7997-8002. http://dx.doi.org/10.7314/APJCP.2015.16.17.7997
  16. Kuan, G. C., Sheng, L. P., Rijiravanich, P., Marimuthu, K., Ravichandran, M., Yin, L. S., Lertanantawong, B., & Surareungchai, W. (2013). Gold-nanoparticle based electrochemical DNA sensor for the detection offish pathogen Aphanomycesinvadans. Talanta, 117, 312-317. doi: 10.1016/j.talanta.2013.09.016. Epub 2013 Sep 19. http://dx.doi.org/10.1016/j.talanta.2013.09.016
  17. Evsegneeva, Zh. V. (2012). Razrabotka i primenenie PTsR-tekhnologiy dlya molekulyarno-geneticheskoy diagnostiki gerpesvirusov. Candidate’s thesis. Moskva.
  18. Shao, L., Xiao, Y., He, Z., & Gao, L. (2016). An N-targeting real-time PCR strategy for the accurate detection of spring viremia of carp virus. J Virol Methods, 229, 27-34. doi: 10.1016/j.jviromet.2015.12.008. http://dx.doi.org/10.1016/j.jviromet.2015.12.008
  19. Igbinosa, E. O. (2015). Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health. Microb Drug. Resist., 5.
  20. Tsui, C. K., Woodhall, J., Chen, W., Lévesque, C. A., Lau, A., Schoen, C. D., Baschien, C., Najafzadeh, M. J., & de Hoog, G. S. (2011). Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus., 2(2), 177-189. doi: 10.5598/imafungus.
  21. Isaksen, T. E., Karlsbakk, E., Repstad, O., & Nylund, A. (2012). Molecular tools for the detection and identification of Ichthyobodo spp. (Kinetoplastida), important fish parasites. Parasitol Int., 61(4), 675-683. doi: 10.1016/j.parint.
  22. Shigemori, Y., Haruta, H., Okada, T., & Oishi, M. (2004). Marking of specific sequences in double-stranded DNA molecules-SNP detection and direct observation. Genome Res., 14(12), 2478-2485. http://dx.doi.org/10.1101/gr.2789604
  23. Zhang, Y., & Dai, B. (1992). Marking and detection of DNA of leptospires in the dot-blot and situ hybridization with digoxigenin-labelled probes. Journal of West China University of Medical Sciences: Hua Xi Yi Ke Da Xue Xue Bao, 23(4), 353-357.
  24. Cremers, A. F., Jansen in de Wal, N., Wiegant, J., Dirks, R. W., Weisbeek, P., van der Ploeg, M., & Landegent, J. E. (1987). Non-radioactive in situ hybridization. A comparison of several immunocytochemical detection systems using reflection-contrast and electron microscopy. Histochemistry, 86(6), 609-615. http://dx.doi.org/10.1007/bf00489555
  25. Kołodziejski, D., Brillowska-Dąbrowska, A., & Bartoszek, A. (2015). The extended version of restriction analysis approach for the examination of the ability of low-molecular-weight compounds to modify DNA in a cell-free system. Food Chem Toxicol., 75, 118-127. doi: 10.1016/j.fct.2014.11.016. http://dx.doi.org/10.1016/j.fct.2014.11.016
  26. Liu, Q., Gao, F., Weng, S., Peng, H., Lin, L., Zhao, C., & Lin, X. (2015). A molecular switch sensor for detection of PRSS1 genotype based on site-specific DNA cleavage of restriction endonuclease. Ann Clin Lab Sci., 45(2), 128-133.
  27. He, Q., Wang, L., Wang, F., Wang, C., Tang, C., Li, Q., Li, J., & Zhao, Q. (2013). Microbial fingerprinting detects intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis. BMC Microbiol., 13, 289. doi: 10.1186/1471-2180-13-289.http://dx.doi.org/10.1186/1471-2180-13-289 
  28. Li, X., Qu, Y., Zhang, P., Zhang, J., Zhang, L., Huang, D., & Zhang, Y. (2011). Application of polymerase chain reaction-restriction fragment length polymorphism and lab-on-a-chip technology to the identification of fishspecies from Bohai Bay. Se Pu., 2011, 29(7), 673-676.
  29. Tanaka, Y., Takahashi, H., Kitazawa, N., & Kimura, B. (2010). Rapid estimation of microbial populations in fish samples by using terminal restriction fragment length polymorphism analysis of 16S rDNA. J Food Prot., 73(1), 104-113.
  30. Nilsson, W. B., & Strom, M. S. (2002). Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Dis Aquat Organ., 48(3), 175-185. http://dx.doi.org/10.3354/dao048175
  31. Eszterbauer, E., Benko, M., Dán, A., & Molnár, K. (2001). Identification of fish-parasitic Myxobolus (Myxosporea) species using a combined PCR-RFLP method. Dis Aquat Organ., 44(1), 35-39. http://dx.doi.org/10.3354/dao044035
  32. Artamonova, V. S., & Makhrov, A. A. (2015). Geneticheskie metody v lososevodstve i forelevodstve ot traditsionnoy selektsii do nanobiotekhnologiy. Moskva : Tovarishchestvo nauchnykh izdaniy KMK.
  33. Ransom, D. G., & Zon, L. I. (1999). Mapping zebrafish mutations by AFLP. Methods Cell Biol., 60, 195-211. http://dx.doi.org/10.1016/S0091-679X(08)61902-0
  34. Li, T. (2006). The advancement of AFLP technology. Sheng Wu Gong Cheng Xue Bao, 22(5), 861-865.
  35. Papa, R., Troggio, M., Ajmone-Marsan, P., & Nonnis Marzano, F. (2005). An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis. J Anim Breed Genet., 122(1), 62-68. http://dx.doi.org/10.1111/j.1439-0388.2004.00476.x
  36. Velappan, N., Snodgrass, J. L., Hakovirta, J. R., Marrone, B. L., & Burde, S. (2001). Rapid identification of pathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis. Diagn Microbiol Infect Dis., 39(2), 77-83. http://dx.doi.org/10.1016/S0732-8893(00)00235-2
  37. Viljamaa-Dirks, S., Heinikainen, S., Torssonen, H., Pursiainen, M., Mattila, J., & Pelkonen, S. (2013). Distribution and epidemiology of genotypes of the crayfish plague agent Aphanomyces astaci from noble crayfish Astacus astacus in Finland. Dis Aquat Organ., 103(3), 199-208. doi: 10.3354/dao02575. http://dx.doi.org/10.3354/dao02575
  38. Oidtmann, B., Schmid, I., Rogers, D., & Hoffmann, R. W. (1999). An improved isolation method for the cultivation of the crayfish plague fungus. Aphanomyces astaci. Freshw Crayfish., 12, 303-312.
  39. Lilley, H., Thompson, K. D., & Adams A. (1997). Characterization of Aphanomyces invadans by electrophoretic and Western blot analysis. Dis Aquat Org, 30, 187-197. http://dx.doi.org/10.3354/dao030187
  40. Zaloilo, O. V. (2012). Osnovni aspekty vykorystannia RAPD metodu v rybnytstvi. Zbirnyk naukovykh prats PDATU, 20, 83-85.
  41. Schena, M. (1996). Genome analysis with gene expression microarrays. Bioеssays, 18(5), 427-431. http://dx.doi.org/10.1002/bies.950180513
  42. Bumgarner, R. (2013). DNA microarrays: Types, Applications and their future. Curr. Prot. Mol. Biol. doi:10.1002/0471142727.mb2201s101. http://dx.doi.org/10.1002/0471142727.mb2201s101
  43. The National Center for Biotechnology Information. GenBank Overview. ncbi.nlm.nih.gov/genbank. Retrieved from : http://www.ncbi.nlm.nih.gov/genbank.
  44. Byon, J. Y., Ohira, T., Hirono, I., & Aoki, T. (2005). Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol., 18 (2), 135-147. http://dx.doi.org/10.1016/j.fsi.2004.06.008
  45. Peatman, E., Terhune, J., Baoprasertkul, P., Xu, P., Nandi, S., Wang, S., Somridhivej, B., Kucuktas, H., Li, P., Dunham, R., & Liu, Z. (2008). Microarray analysis of gene expression in the bluecatfish liver reveals early activation of the MHC class I pathway after infection with Edwardsiella ictaluri. Mol. Immunol., 45(2), 553-566. http://dx.doi.org/10.1016/j.molimm.2007.05.012
  46. Monaghan, S. J., Thompson, K. D., Adams, A., Kempter, J., & Bergmann, S. M. (2015). Examination of the early infection stages of koi herpesvirus (KHV) in experimentally infected carp, Cyprinus carpio L. using in situ hybridization. J Fish Dis., 38(5), 477-489. doi: 10.1111/jfd.12260. Epub 2014 Jun 13. http://dx.doi.org/10.1111/jfd.12260
  47. Gupta, A., & Mo, Y. Y. (2011). Detection of microRNAs in cultured cells and paraffin-embedded tissue specimens by in situ hybridization. Methods Mol Biol., 676, 73-83. doi: 10.1007/978-1-60761-863-8_6. http://dx.doi.org/10.1007/978-1-60761-863-8_6
  48. Wu, B., Liu, X. L., Xuan, W. L., Feng, R., Yin, F., & Zhou, S. Y. (2002). Detection of stem cell factor mRNA expression in leukemic cells by in situreverse transcriptase-PCR. Di Yi Jun Yi Da Xue Xue Bao, 22(6), 490-492.
  49. Argani, P., Iacobuzio-Donahue, C., Ryu, B., Rosty, C., Goggins, M., Wilentz, R. E., Murugesan, S. R., Leach, S. D., Jaffee, E., Yeo, C. J., Cameron, J. L., Kern, S. E., & Hruban, R. H. (2001). Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res., 7(12), 3862-3868.
  50. Crotwell, P. L., Sommervold, A. R., & Mabee, P. M. (2004). Expression of bmp2a and bmp2b in late-stage zebrafish median fin development. Gene Expr Patterns, 5(2), 291-296. http://dx.doi.org/10.1016/j.modgep.2004.07.001
  51. Schumacher, J. A., Zhao, E. J., Kofron, M. J., & Sumanas, S. (2014). Two-color fluorescent in situ hybridization using chromogenic substrates in zebrafish. Biotechniques, 57(5), 254-256. doi: 10.2144/000114229.
  52. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 15, 28(12), E63. http://dx.doi.org/10.1093/nar/28.12.e63
  53. Caipang, C. M., Haraguchi, I., Ohira, T., Hirono, I., & Aoki, T. (2004). Rapid detection of a fish iridovirus using loop-mediated isothermal amplification (LAMP). J Virol Methods, 121(2), 155-161. http://dx.doi.org/10.1016/j.jviromet.2004.06.011
  54. El-Matbouli, M., & Soliman, H. (2005). Rapid diagnosis of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD) in salmonid fish by a novel DNA amplification method, loop-mediated isothermal amplification (LAMP). Parasitol Res., 96(5), 277-284. http://dx.doi.org/10.1007/s00436-005-1361-3
  55. de Kort, B. J., ten Kate, G. A., de Jong, G. J., & Somsen, G. W. (2011). Capillary electrophoresis with lamp-based wavelength-resolved fluorescence detection for the probing of protein conformational changes. Anal Chem., 83(15), 6060-6067. doi: 10.1021/ac201136y. http://dx.doi.org/10.1021/ac201136y
  56. Seyrig, G., Stedtfeld, R. D., Tourlousse, D. M., Ahmad, F., Towery, K., Cupples, A. M., Tiedje, J. M., & Hashsham, S. A. (2015). Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. J Microbiol Methods, 119, 223-227. doi: 10.1016/j.mimet.2015.11.004. http://dx.doi.org/10.1016/j.mimet.2015.11.004
  57. Li, B., Chen, X., & Ellington, A. D. (2012). Adapting enzyme-free DNA circuits to the detection of loop-mediated isothermal amplification reactions. Anal Chem., 84(19), 8371-8377. doi: 10.1021/ac301944v. http://dx.doi.org/10.1021/ac301944v
  58. Ushikubo, H. (2004). Principle of LAMP method a simple and rapid gene amplification method. Uirusu, 54(1), 107-112. http://dx.doi.org/10.2222/jsv.54.107
  59. Zav'yalova, E. A., Kandrina, N. Yu., Lomakina, N. F, & Gulyukin, M. I. (2015). Indikatsiya i identifikatsiya nekotorykh osobo opasnykh virusov ryb metodom PTsR. Rybovodstvo i rybnoe khozyaystvo, 3, 21-25.