Ribogospod. nauka Ukr., 2014; 4(30): 58-69
DOI: https://doi.org/10.15407/fsu2014.04.058
УДК [597.587.9+597.593.4]:556.114.621

pdf35

OPTIMUM, CRITICAL AND THRESHOLD VALUES FOR WATER OXYGENATION FOR MULLETS (MUGILIDAE) AND FLATFISHES (PLEURONECTIDAE) IN ONTOGENESIS

P. Shekk, This email address is being protected from spambots. You need JavaScript enabled to view it. , Odessa State Environmental University, Odessa

Purpose. To determine the optimum, critical, and threshold values of water oxygenation for embryos, larvae and fingerlings of mullets and flatfishes under different temperature conditions.

Methodology. Oxygen consumption was studied in chronic experiments with «interrupted flow» method with automatic fixation of dissolved oxygen in water with the aid of an oxygen sensor and automatic, continuous recording of the obtained results. «Critical» (Pcrit.), and the «threshold» (Pthr.) oxygen tension in the water have been determined.

Findings. Under optimum conditions, the normal embryogenesis of mullets and flatfish to the gastrulation stage, provided 90–130% oxygen saturation. The critical content was 80–85%, the threshold – 65–70% of the saturation. At the stage of «movable embryo» depending on water temperature and fish species, the optimum range of water oxygenation was within 70‒127.1%. The most tolerant to oxygen deficiency was flounder Platichthys luscus (Pcrit – 25.4–27,5; Pthr. – 20.5–22.5%), the least resistant to hypoxia was striped mullet Mugil серhalus (Pcrit. – 50–60; Pthr. – 35–40%). The limits of the critical and threshold concentration of dissolved oxygen directly depended on the temperature and salinity, at which embryogenesis occurred. An increase in water temperature and salinity resulted in an increase in critical and threshold values for oxygen tension embryos. Mullet and flatfish fingerlings in all stages of development had a high tolerance to hypoxia, which increased as they grew. They were resistant to the oversaturation of water with oxygen. The most demanding for the oxygen regime are larvae and fingerlings of striped mullet and Liza aurata. Hypoxia tolerance of Psetta maeoticus (Psetta maeoticus) and flounder at all stages of development is very high. The fingerlings of these species can endure reduction of the dissolved oxygen in water to 2.10 and 1.65 mgO2/dm3 respectively for a long time without visible effects.

Originality. For the first time, we experimentally established the optimum, critical and threshold values for water oxygenation for embryos, larvae and juveniles of striped mullet, golden mullet, haarder, flounder and Black Sea turbot.

Practical value. The obtained data can be used for the optimization of culture conditions and commodity cultivation of mullets and flatfishes.

Keywords: oxygen saturation, critical thresholds, embryos, larvae, fingerlings, mullets (Mugilidae), flatfish (Pleuronectidae).

REFERENCES

1. Baklashova, T. A. (1980). Ikhtiologiya. Moskva.
2. Vinberg, G. G. (1936). Intensivnost' obmena i temperaturnaya adaptatsiya. Uspekhi sovremennoy biologii, 5, 2, 371-384.
3. Vinberg, G. G. (1956). Intensivnost' obmena i pishchevye potrebnosti ryb. Minsk: Izd-vo Belorusskogo universiteta.
4. Aronovich, T. M., Maslova, O. N., Lapina, N. M. et al. (1986). Instruktsiya po razvedeniyu kefali lobana. Moskva: VNIRO.
5. Kasimov, R. Yu., & Kasimova, Z. K. (1967). Kislorodnyy porog u molodi osetrovykh v rannem ontogeneze. Nauchnaya sessiya TsNIORKh. Baku, pp. 34-35.
6. Klyashtorin, L. B., & Yarzhombek, A. A. (1972). Opredelenie standartnogo obmena u ryb s pomoshch'yu membrannogo elektroda. Trudy VNIRO, 85, 36-45.
7. Klyashtorin, L. B. (1976). Opredelenie skorosti dykhaniya ryb v reguliruemykh kislorodnykh usoloviyakh. Gidrobiologicheskiy zhurnal, 5, 12-14.
8. Klyashtorin, L. B. (1976). O chuvstvitel'nosti molodi osetrovykh k defitsitu kisloroda. Voprosy ikhtiologii, 16, 4, 744-748.
9. Klyashtorin, L. B. (1982). Vodnoe dykhanie i kislorodnye potrebnosti ryb. Moskva: Legkaya i pishchevaya promyshlennost'.
10. Kokoza, A. A. (1969). Dinamika ustoychivosti molodi osetrovykh k defitsitu kisloroda v period zavodskogo vyrashchivaniya. Nauch. sessiya posvyashchennaya 100-letiyu osetrovodstva. Astrakhan', 49-58.
11. Konovalov P. M. (1961). Opyty s molod'yu sevryugi na dykhanie i kislorodnyy porog. Sb. rabot po ikhtiologii i gidrobiologii, 3, 93-105.
12. Kulikova, N. I., & Shekk, P. V. (1996). Biotekhnika iskusstvennogo vosproizvodstva kefaley (lobana, singilya, pilengasa) s opisaniem skhemy tipovogo rybopitomnika. Kerch': Izdatel'skiy tsentr YugNIRO.
13. Maslova, O. N. (1986). Vliyanie temperatury na skorost' dykhaniya kefali lobana v rannem ontogeneze. Energeticheskiy obmen ryb: Vsesoyuznoe soveshchanie. Suzdal', 39.
14. Maslova, O. N. (1989). Ekologo-fiziologicheskaya kharakteristika rannikh stadiy razvitiya kefali-lobana v usloviyakh iskusstvennogo vosproizvodstva. Extended abstract of candidate’s thesis. Moskva.
15. Shekk, P. V., Kulikova, N. I., Fedulina, V. N. et al. (1993). Metodicheskie ukazaniya po razvedeniyu kefali pilengasa Mugil so-iny (Basilewsky) v vodoemakh yuga Ukrainy. Kiev: Ukrrybkhoz.
16. Mikodina, E. V., & Dushkina, L. A. (Eds.). (1998). Biologicheskie osnovy i metody upravleniya funktsiyami v rannem ontogeneze ryb. Biologicheskie osnovy marikul'tury. Moskva: VNIRO, 178-205.
17. Movchan, Yu. V. (2006). Zauvazhennia do skladu ikhtiofauny Ukrainy (nechyslenni, znykli, novi vydy) ta suchasni zminy v nomenklaturi yii toksoniv : (u poriadku obhovorennia). 
Zbirnyk prats zoolohichnoho muzeiu, 3834-43.
18. Ozernyuk, N. D. (1985). Energeticheskiy obmen v rannem ontogeneze ryb. Moskva: Nauka.
19. Parin, N. V. (2003). Liza hematocheilus - pravil'noe vidovoe nazvanie kefali pilengas (Mugilidae). Voprosy ikhtiologii, 43, 3, 418-419.
20. Parfenova, I. A., & Soldatov, A. A. (2011). Funktsional'naya morfologiya tsirkuliruyushchikh eritrotsitov bychka-kruglyaka v usloviyakh eksperimental'noy gipoksii. Morskoy ekologicheskiy zhurnal, 10, 2, 59-67.
21. Reznichenko, P. N. (1982). Preobrazovanie i smena mekhanizmov funktsiy v ontogeneze nizshikh pozvonochnykh. Moskva: Nauka.
22. Stavytska, O. M. (1997). Osoblyvosti enerhetychnoho ta azotystoho obminu u ryb Chornoho moria pry riznykh kysnevykh rezhymakh. Extended abstract of candidate’s thesis. Sevastopol.
23. Shekk, P. V., & Kostylev, E. F. (1987). Primenenie metoda «prervannogo potoka» v ikhtiotoksikologicheskikh eksperimentakh. Metody ikhtiotoksikologicheskikh issledovaniy: 1 Vsesoyuznyy simpozium. Leningrad, 67-68.
24. Shekk, P. V. (2012). Biologicheski-tekhnologicheskie osnovy kul'tivirovaniya kefalevykh i kambalovykh ryb. Kherson: ChP Grin'.
25. Andrews, J. W., Murrai, T., & Gibbons, G. (1973). The influence of dissolved oxygen on the growth of channel catfish. Trans. Amer. Fish., Soc., 102, 4, 17. http://dx.doi.org/10.1577/1548-8659(1973)102<835:tiodoo>2.0.co;2
26. Thompson, T. G., & Miller, R. C. (1928). Apparatus for microdetermination of dissolved oxygen. Industr. Engineer. Chem., 20, 7, 56.
27. Fox, H. M., & Wingjield, C. A. (1938). A portable apparatus for determination of oxygen, dissolved in a small volume of water. J. Exptl. Biol., 15.